1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
use crate::{convert, ops};
/// 用于告诉操作是应该提前退出还是像往常一样继续操作。
///
/// 在将您希望用户能够选择是否提前退出的事物 (例如图形遍历或访问者) 公开时使用。
/// 有了枚举可以使它更清晰 - 不必再奇怪 "wait, what did `false` mean again?" 了 - 并允许包含一个值。
///
/// 与 [`Option`] 和 [`Result`] 类似,此枚举可与 `?` 运算符一起使用,以便在 [`Break`] 变体存在时立即返回,或者以其他方式正常继续使用 [`Continue`] 变体中的值。
///
///
/// # Examples
///
/// 从 [`Iterator::try_for_each`] 提前退出:
///
/// ```
/// use std::ops::ControlFlow;
///
/// let r = (2..100).try_for_each(|x| {
/// if 403 % x == 0 {
/// return ControlFlow::Break(x)
/// }
///
/// ControlFlow::Continue(())
/// });
/// assert_eq!(r, ControlFlow::Break(13));
/// ```
///
/// 一个基本的树遍历:
///
/// ```
/// use std::ops::ControlFlow;
///
/// pub struct TreeNode<T> {
/// value: T,
/// left: Option<Box<TreeNode<T>>>,
/// right: Option<Box<TreeNode<T>>>,
/// }
///
/// impl<T> TreeNode<T> {
/// pub fn traverse_inorder<B>(&self, f: &mut impl FnMut(&T) -> ControlFlow<B>) -> ControlFlow<B> {
/// if let Some(left) = &self.left {
/// left.traverse_inorder(f)?;
/// }
/// f(&self.value)?;
/// if let Some(right) = &self.right {
/// right.traverse_inorder(f)?;
/// }
/// ControlFlow::Continue(())
/// }
/// fn leaf(value: T) -> Option<Box<TreeNode<T>>> {
/// Some(Box::new(Self { value, left: None, right: None }))
/// }
/// }
///
/// let node = TreeNode {
/// value: 0,
/// left: TreeNode::leaf(1),
/// right: Some(Box::new(TreeNode {
/// value: -1,
/// left: TreeNode::leaf(5),
/// right: TreeNode::leaf(2),
/// }))
/// };
/// let mut sum = 0;
///
/// let res = node.traverse_inorder(&mut |val| {
/// if *val < 0 {
/// ControlFlow::Break(*val)
/// } else {
/// sum += *val;
/// ControlFlow::Continue(())
/// }
/// });
/// assert_eq!(res, ControlFlow::Break(-1));
/// assert_eq!(sum, 6);
/// ```
///
/// [`Break`]: ControlFlow::Break
/// [`Continue`]: ControlFlow::Continue
///
#[stable(feature = "control_flow_enum_type", since = "1.55.0")]
// 根据 RFC 3058,ControlFlow 不应实现 PartialOrd 或 Ord:
// https://rust-lang.github.io/rfcs/3058-try-trait-v2.html#traits-for-controlflow
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ControlFlow<B, C = ()> {
/// 照常进行下一阶段的操作。
#[stable(feature = "control_flow_enum_type", since = "1.55.0")]
#[lang = "Continue"]
Continue(C),
/// 退出操作而不运行后续阶段。
#[stable(feature = "control_flow_enum_type", since = "1.55.0")]
#[lang = "Break"]
Break(B),
// 是的,变体的顺序与类型参数不匹配。
// 它们是按此顺序排列的,因此 `ControlFlow<A, B>` <-> `Result<B, A>` 是 `Try` 实现中的无操作转换。
//
}
#[unstable(feature = "try_trait_v2", issue = "84277")]
impl<B, C> ops::Try for ControlFlow<B, C> {
type Output = C;
type Residual = ControlFlow<B, convert::Infallible>;
#[inline]
fn from_output(output: Self::Output) -> Self {
ControlFlow::Continue(output)
}
#[inline]
fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
match self {
ControlFlow::Continue(c) => ControlFlow::Continue(c),
ControlFlow::Break(b) => ControlFlow::Break(ControlFlow::Break(b)),
}
}
}
#[unstable(feature = "try_trait_v2", issue = "84277")]
impl<B, C> ops::FromResidual for ControlFlow<B, C> {
#[inline]
fn from_residual(residual: ControlFlow<B, convert::Infallible>) -> Self {
match residual {
ControlFlow::Break(b) => ControlFlow::Break(b),
}
}
}
#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
impl<B, C> ops::Residual<C> for ControlFlow<B, convert::Infallible> {
type TryType = ControlFlow<B, C>;
}
impl<B, C> ControlFlow<B, C> {
/// 如果这是 `Break` 变体,则返回 `true`。
///
/// # Examples
///
/// ```
/// use std::ops::ControlFlow;
///
/// assert!(ControlFlow::<i32, String>::Break(3).is_break());
/// assert!(!ControlFlow::<String, i32>::Continue(3).is_break());
/// ```
#[inline]
#[stable(feature = "control_flow_enum_is", since = "1.59.0")]
pub fn is_break(&self) -> bool {
matches!(*self, ControlFlow::Break(_))
}
/// 如果这是 `Continue` 变体,则返回 `true`。
///
/// # Examples
///
/// ```
/// use std::ops::ControlFlow;
///
/// assert!(!ControlFlow::<i32, String>::Break(3).is_continue());
/// assert!(ControlFlow::<String, i32>::Continue(3).is_continue());
/// ```
#[inline]
#[stable(feature = "control_flow_enum_is", since = "1.59.0")]
pub fn is_continue(&self) -> bool {
matches!(*self, ControlFlow::Continue(_))
}
/// 如果 `ControlFlow` 为 `Break`,则将 `ControlFlow` 转换为 `Some`,否则为 `None`。
///
///
/// # Examples
///
/// ```
/// #![feature(control_flow_enum)]
/// use std::ops::ControlFlow;
///
/// assert_eq!(ControlFlow::<i32, String>::Break(3).break_value(), Some(3));
/// assert_eq!(ControlFlow::<String, i32>::Continue(3).break_value(), None);
/// ```
#[inline]
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub fn break_value(self) -> Option<B> {
match self {
ControlFlow::Continue(..) => None,
ControlFlow::Break(x) => Some(x),
}
}
/// Maps `ControlFlow<B, C>` 到 `ControlFlow<T, C>` 通过在中断值 (如果存在) 上应用函数来实现。
///
#[inline]
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub fn map_break<T, F>(self, f: F) -> ControlFlow<T, C>
where
F: FnOnce(B) -> T,
{
match self {
ControlFlow::Continue(x) => ControlFlow::Continue(x),
ControlFlow::Break(x) => ControlFlow::Break(f(x)),
}
}
/// 将 `ControlFlow` 转换为 `Option`,如果 `ControlFlow` 为 `Continue`,则为 `Some`,否则为 `None`。
///
///
/// # Examples
///
/// ```
/// #![feature(control_flow_enum)]
/// use std::ops::ControlFlow;
///
/// assert_eq!(ControlFlow::<i32, String>::Break(3).continue_value(), None);
/// assert_eq!(ControlFlow::<String, i32>::Continue(3).continue_value(), Some(3));
/// ```
#[inline]
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub fn continue_value(self) -> Option<C> {
match self {
ControlFlow::Continue(x) => Some(x),
ControlFlow::Break(..) => None,
}
}
/// Maps `ControlFlow<B, C>` 到 `ControlFlow<B, T>` 通过将函数应用于 continue 值,以防它存在。
///
#[inline]
#[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
pub fn map_continue<T, F>(self, f: F) -> ControlFlow<B, T>
where
F: FnOnce(C) -> T,
{
match self {
ControlFlow::Continue(x) => ControlFlow::Continue(f(x)),
ControlFlow::Break(x) => ControlFlow::Break(x),
}
}
}
/// 这些仅用作实现迭代器适配器的一部分。
/// 它们具有普通的名称和不明显的语义,因此目前还没有走上潜在的稳定之路。
///
impl<R: ops::Try> ControlFlow<R, R::Output> {
/// 从实现 `Try` 的任何类型创建 `ControlFlow`。
#[inline]
pub(crate) fn from_try(r: R) -> Self {
match R::branch(r) {
ControlFlow::Continue(v) => ControlFlow::Continue(v),
ControlFlow::Break(v) => ControlFlow::Break(R::from_residual(v)),
}
}
/// 将 `ControlFlow` 转换为实现 `Try` 的任何类型;
#[inline]
pub(crate) fn into_try(self) -> R {
match self {
ControlFlow::Continue(v) => R::from_output(v),
ControlFlow::Break(v) => v,
}
}
}