练习:表达式求值

Let's write a simple recursive evaluator for arithmetic expressions.

An example of a small arithmetic expression could be 10 + 20, which evaluates to 30. We can represent the expression as a tree:

+1020

A bigger and more complex expression would be (10 * 9) + ((3 - 4) * 5), which evaluate to 85. We represent this as a much bigger tree:

+**109-534

In code, we will represent the tree with two types:


#![allow(unused)]
fn main() {
/// An operation to perform on two subexpressions.
#[derive(Debug)]
enum Operation {
    Add,
    Sub,
    Mul,
    Div,
}

/// An expression, in tree form.
#[derive(Debug)]
enum Expression {
    /// An operation on two subexpressions.
    Op { op: Operation, left: Box<Expression>, right: Box<Expression> },

    /// A literal value
    Value(i64),
}
}

The Box type here is a smart pointer, and will be covered in detail later in the course. An expression can be "boxed" with Box::new as seen in the tests. To evaluate a boxed expression, use the deref operator (*) to "unbox" it: eval(*boxed_expr).

Some expressions cannot be evaluated and will return an error. The standard Result<Value, String> type is an enum that represents either a successful value (Ok(Value)) or an error (Err(String)). We will cover this type in detail later.

将代码复制粘贴到 Rust Playground,然后开始实现 eval。最终结果应能通过测试。使用 todo!() 并使测试逐个通过可能会很有帮助。您还可以使用 #[ignore] 暂时跳过测试:

#[test]
#[ignore]
fn test_value() { .. }

#![allow(unused)]
fn main() {
/// An operation to perform on two subexpressions.
#[derive(Debug)]
enum Operation {
    Add,
    Sub,
    Mul,
    Div,
}

/// An expression, in tree form.
#[derive(Debug)]
enum Expression {
    /// An operation on two subexpressions.
    Op { op: Operation, left: Box<Expression>, right: Box<Expression> },

    /// A literal value
    Value(i64),
}

fn eval(e: Expression) -> Result<i64, String> {
    todo!()
}

#[test]
fn test_value() {
    assert_eq!(eval(Expression::Value(19)), Ok(19));
}

#[test]
fn test_sum() {
    assert_eq!(
        eval(Expression::Op {
            op: Operation::Add,
            left: Box::new(Expression::Value(10)),
            right: Box::new(Expression::Value(20)),
        }),
        Ok(30)
    );
}

#[test]
fn test_recursion() {
    let term1 = Expression::Op {
        op: Operation::Mul,
        left: Box::new(Expression::Value(10)),
        right: Box::new(Expression::Value(9)),
    };
    let term2 = Expression::Op {
        op: Operation::Mul,
        left: Box::new(Expression::Op {
            op: Operation::Sub,
            left: Box::new(Expression::Value(3)),
            right: Box::new(Expression::Value(4)),
        }),
        right: Box::new(Expression::Value(5)),
    };
    assert_eq!(
        eval(Expression::Op {
            op: Operation::Add,
            left: Box::new(term1),
            right: Box::new(term2),
        }),
        Ok(85)
    );
}

#[test]
fn test_zeros() {
    assert_eq!(
        eval(Expression::Op {
            op: Operation::Add,
            left: Box::new(Expression::Value(0)),
            right: Box::new(Expression::Value(0))
        }),
        Ok(0)
    );
    assert_eq!(
        eval(Expression::Op {
            op: Operation::Mul,
            left: Box::new(Expression::Value(0)),
            right: Box::new(Expression::Value(0))
        }),
        Ok(0)
    );
    assert_eq!(
        eval(Expression::Op {
            op: Operation::Sub,
            left: Box::new(Expression::Value(0)),
            right: Box::new(Expression::Value(0))
        }),
        Ok(0)
    );
}

#[test]
fn test_error() {
    assert_eq!(
        eval(Expression::Op {
            op: Operation::Div,
            left: Box::new(Expression::Value(99)),
            right: Box::new(Expression::Value(0)),
        }),
        Err(String::from("division by zero"))
    );
}
}