一些疑难问题的解决办法

async 在 Rust 依然比较新,疑难杂症少不了,而它们往往还处于活跃开发状态,短时间内无法被解决,因此才有了本文。下面一起来看看这些问题以及相应的临时解决方案。

在 async 语句块中使用 ?

async 语句块和 async fn 最大的区别就是前者无法显式的声明返回值,在大多数时候这都不是问题,但是当配合 ? 一起使用时,问题就有所不同:

async fn foo() -> Result<u8, String> {
    Ok(1)
}
async fn bar() -> Result<u8, String> {
    Ok(1)
}
pub fn main() {
    let fut = async {
        foo().await?;
        bar().await?;
        Ok(())
    };
}

以上代码编译后会报错:

error[E0282]: type annotations needed
  --> src/main.rs:14:9
   |
11 |     let fut = async {
   |         --- consider giving `fut` a type
...
14 |         Ok(1)
   |         ^^ cannot infer type for type parameter `E` declared on the enum `Result`

原因在于编译器无法推断出 Result<T, E> 中的 E 的类型, 而且编译器的提示 consider giving `fut` a type 你也别傻乎乎的相信,然后尝试半天,最后无奈放弃:目前还没有办法为 async 语句块指定返回类型。

既然编译器无法推断出类型,那咱就给它更多提示,可以使用 ::< ... > 的方式来增加类型注释:


#![allow(unused)]
fn main() {
let fut = async {
    foo().await?;
    bar().await?;
    Ok::<(), String>(()) // 在这一行进行显式的类型注释
};
}

给予类型注释后此时编译器就知道 Result<T, E> 中的 E 的类型是 String,进而成功通过编译。

async 函数和 Send 特征

在多线程章节我们深入讲过 Send 特征对于多线程间数据传递的重要性,对于 async fn 也是如此,它返回的 Future 能否在线程间传递的关键在于 .await 运行过程中,作用域中的变量类型是否是 Send

学到这里,相信大家已经很清楚 Rc 无法在多线程环境使用,原因就在于它并未实现 Send 特征,那咱就用它来做例子:


#![allow(unused)]
fn main() {
use std::rc::Rc;

#[derive(Default)]
struct NotSend(Rc<()>);
}

事实上,未实现 Send 特征的变量可以出现在 async fn 语句块中:

async fn bar() {}
async fn foo() {
    NotSend::default();
    bar().await;
}

fn require_send(_: impl Send) {}

fn main() {
    require_send(foo());
}

即使上面的 foo 返回的 FutureSend, 但是在它内部短暂的使用 NotSend 依然是安全的,原因在于它的作用域并没有影响到 .await,下面来试试声明一个变量,然后让 .await 的调用处于变量的作用域中试试:


#![allow(unused)]
fn main() {
async fn foo() {
    let x = NotSend::default();
    bar().await;
}
}

不出所料,错误如期而至:

error: future cannot be sent between threads safely
  --> src/main.rs:17:18
   |
17 |     require_send(foo());
   |                  ^^^^^ future returned by `foo` is not `Send`
   |
   = help: within `impl futures::Future<Output = ()>`, the trait `std::marker::Send` is not implemented for `Rc<()>`
note: future is not `Send` as this value is used across an await
  --> src/main.rs:11:5
   |
10 |     let x = NotSend::default();
   |         - has type `NotSend` which is not `Send`
11 |     bar().await;
   |     ^^^^^^^^^^^ await occurs here, with `x` maybe used later
12 | }
   | - `x` is later dropped here

提示很清晰,.await在运行时处于 x 的作用域内。在之前章节有提到过, .await 有可能被执行器调度到另一个线程上运行,而 Rc 并没有实现 Send,因此编译器无情拒绝了咱们。

其中一个可能的解决方法是在 .await 之前就使用 std::mem::drop 释放掉 Rc,但是很可惜,截止今天,该方法依然不能解决这种问题。

不知道有多少同学还记得语句块 { ... } 在 Rust 中其实具有非常重要的作用(特别是相比其它大多数语言来说时):可以将变量声明在语句块内,当语句块结束时,变量会自动被 Drop,这个规则可以帮助我们解决很多借用冲突问题,特别是在 NLL 出来之前。


#![allow(unused)]
fn main() {
async fn foo() {
    {
        let x = NotSend::default();
    }
    bar().await;
}
}

是不是很简单?最终我们还是通过 Drop 的方式解决了这个问题,当然,还是期待未来 std::mem::drop 也能派上用场。

递归使用 async fn

在内部实现中,async fn 被编译成一个状态机,这会导致递归使用 async fn 变得较为复杂, 因为编译后的状态机还需要包含自身。


#![allow(unused)]
fn main() {
// foo函数:
async fn foo() {
    step_one().await;
    step_two().await;
}
// 会被编译成类似下面的类型:
enum Foo {
    First(StepOne),
    Second(StepTwo),
}

// 因此 recursive 函数
async fn recursive() {
    recursive().await;
    recursive().await;
}

// 会生成类似以下的类型
enum Recursive {
    First(Recursive),
    Second(Recursive),
}
}

这是典型的动态大小类型,它的大小会无限增长,因此编译器会直接报错:

error[E0733]: recursion in an `async fn` requires boxing
 --> src/lib.rs:1:22
  |
1 | async fn recursive() {
  |                      ^ an `async fn` cannot invoke itself directly
  |
  = note: a recursive `async fn` must be rewritten to return a boxed future.

如果认真学过之前的章节,大家应该知道只要将其使用 Box 放到堆上而不是栈上,就可以解决,在这里还是要称赞下 Rust 的编译器,给出的提示总是这么精确 recursion in an `async fn` requires boxing

就算是使用 Box,这里也大有讲究。如果我们试图使用 Box::pin 这种方式去包裹是不行的,因为编译器自身的限制限制了我们(刚夸过它。。。)。为了解决这种问题,我们只能将 recursive 转变成一个正常的函数,该函数返回一个使用 Box 包裹的 async 语句块:


#![allow(unused)]
fn main() {
use futures::future::{BoxFuture, FutureExt};

fn recursive() -> BoxFuture<'static, ()> {
    async move {
        recursive().await;
        recursive().await;
    }.boxed()
}
}

在特征中使用 async

在目前版本中,我们还无法在特征中定义 async fn 函数,不过大家也不用担心,目前已经有计划在未来移除这个限制了。


#![allow(unused)]
fn main() {
trait Test {
    async fn test();
}
}

运行后报错:

error[E0706]: functions in traits cannot be declared `async`
 --> src/main.rs:5:5
  |
5 |     async fn test();
  |     -----^^^^^^^^^^^
  |     |
  |     `async` because of this
  |
  = note: `async` trait functions are not currently supported
  = note: consider using the `async-trait` crate: https://crates.io/crates/async-trait

好在编译器给出了提示,让我们使用 async-trait 解决这个问题:


#![allow(unused)]
fn main() {
use async_trait::async_trait;

#[async_trait]
trait Advertisement {
    async fn run(&self);
}

struct Modal;

#[async_trait]
impl Advertisement for Modal {
    async fn run(&self) {
        self.render_fullscreen().await;
        for _ in 0..4u16 {
            remind_user_to_join_mailing_list().await;
        }
        self.hide_for_now().await;
    }
}

struct AutoplayingVideo {
    media_url: String,
}

#[async_trait]
impl Advertisement for AutoplayingVideo {
    async fn run(&self) {
        let stream = connect(&self.media_url).await;
        stream.play().await;

        // 用视频说服用户加入我们的邮件列表
        Modal.run().await;
    }
}
}

不过使用该包并不是免费的,每一次特征中的 async 函数被调用时,都会产生一次堆内存分配。对于大多数场景,这个性能开销都可以接受,但是当函数一秒调用几十万、几百万次时,就得小心这块儿代码的性能了!