引用与借用

上节中提到,如果仅仅支持通过转移所有权的方式获取一个值,那会让程序变得复杂。 Rust 能否像其它编程语言一样,使用某个变量的指针或者引用呢?答案是可以。

Rust 通过 借用(Borrowing) 这个概念来达成上述的目的,获取变量的引用,称之为借用(borrowing)。正如现实生活中,如果一个人拥有某样东西,你可以从他那里借来,当使用完毕后,也必须要物归原主。

引用与解引用

常规引用是一个指针类型,指向了对象存储的内存地址。在下面代码中,我们创建一个 i32 值的引用 y,然后使用解引用运算符来解出 y 所使用的值:

fn main() {
    let x = 5;
    let y = &x;

    assert_eq!(5, x);
    assert_eq!(5, *y);
}

变量 x 存放了一个 i325yx 的一个引用。可以断言 x 等于 5。然而,如果希望对 y 的值做出断言,必须使用 *y 来解出引用所指向的值(也就是解引用)。一旦解引用了 y,就可以访问 y 所指向的整型值并可以与 5 做比较。

相反如果尝试编写 assert_eq!(5, y);,则会得到如下编译错误:

error[E0277]: can't compare `{integer}` with `&{integer}`
 --> src/main.rs:6:5
  |
6 |     assert_eq!(5, y);
  |     ^^^^^^^^^^^^^^^^^ no implementation for `{integer} == &{integer}` // 无法比较整数类型和引用类型
  |
  = help: the trait `std::cmp::PartialEq<&{integer}>` is not implemented for
  `{integer}`

不允许比较整数与引用,因为它们是不同的类型。必须使用解引用运算符解出引用所指向的值。

不可变引用

下面的代码,我们用 s1 的引用作为参数传递给 calculate_length 函数,而不是把 s1 的所有权转移给该函数:

fn main() {
    let s1 = String::from("hello");

    let len = calculate_length(&s1);

    println!("The length of '{}' is {}.", s1, len);
}

fn calculate_length(s: &String) -> usize {
    s.len()
}

能注意到两点:

  1. 无需像上章一样:先通过函数参数传入所有权,然后再通过函数返回来传出所有权,代码更加简洁
  2. calculate_length 的参数 s 类型从 String 变为 &String

这里,& 符号即是引用,它们允许你使用值,但是不获取所有权,如图所示: &String s pointing at String s1

通过 &s1 语法,我们创建了一个指向 s1 的引用,但是并不拥有它。因为并不拥有这个值,当引用离开作用域后,其指向的值也不会被丢弃。

同理,函数 calculate_length 使用 & 来表明参数 s 的类型是一个引用:


#![allow(unused)]
fn main() {
fn calculate_length(s: &String) -> usize { // s 是对 String 的引用
    s.len()
} // 这里,s 离开了作用域。但因为它并不拥有引用值的所有权,
  // 所以什么也不会发生
}

人总是贪心的,可以拉女孩小手了,就想着抱抱柔软的身子(读者中的某老司机表示,这个流程完全不对),因此光借用已经满足不了我们了,如果尝试修改借用的变量呢?

fn main() {
    let s = String::from("hello");

    change(&s);
}

fn change(some_string: &String) {
    some_string.push_str(", world");
}

很不幸,妹子你没抱到,哦口误,你修改错了:

error[E0596]: cannot borrow `*some_string` as mutable, as it is behind a `&` reference
 --> src/main.rs:8:5
  |
7 | fn change(some_string: &String) {
  |                        ------- help: consider changing this to be a mutable reference: `&mut String`
                           ------- 帮助:考虑将该参数类型修改为可变的引用: `&mut String`
8 |     some_string.push_str(", world");
  |     ^^^^^^^^^^^ `some_string` is a `&` reference, so the data it refers to cannot be borrowed as mutable
                     `some_string`是一个`&`类型的引用,因此它指向的数据无法进行修改

正如变量默认不可变一样,引用指向的值默认也是不可变的,没事,来一起看看如何解决这个问题。

可变引用

只需要一个小调整,即可修复上面代码的错误:

fn main() {
    let mut s = String::from("hello");

    change(&mut s);
}

fn change(some_string: &mut String) {
    some_string.push_str(", world");
}

首先,声明 s 是可变类型,其次创建一个可变的引用 &mut s 和接受可变引用参数 some_string: &mut String 的函数。

可变引用同时只能存在一个

不过可变引用并不是随心所欲、想用就用的,它有一个很大的限制: 同一作用域,特定数据只能有一个可变引用


#![allow(unused)]
fn main() {
let mut s = String::from("hello");

let r1 = &mut s;
let r2 = &mut s;

println!("{}, {}", r1, r2);
}

以上代码会报错:

error[E0499]: cannot borrow `s` as mutable more than once at a time 同一时间无法对 `s` 进行两次可变借用
 --> src/main.rs:5:14
  |
4 |     let r1 = &mut s;
  |              ------ first mutable borrow occurs here 首个可变引用在这里借用
5 |     let r2 = &mut s;
  |              ^^^^^^ second mutable borrow occurs here 第二个可变引用在这里借用
6 |
7 |     println!("{}, {}", r1, r2);
  |                        -- first borrow later used here 第一个借用在这里使用

这段代码出错的原因在于,第一个可变借用 r1 必须要持续到最后一次使用的位置 println!,在 r1 创建和最后一次使用之间,我们又尝试创建第二个可变借用 r2

对于新手来说,这个特性绝对是一大拦路虎,也是新人们谈之色变的编译器 borrow checker 特性之一,不过各行各业都一样,限制往往是出于安全的考虑,Rust 也一样。

这种限制的好处就是使 Rust 在编译期就避免数据竞争,数据竞争可由以下行为造成:

  • 两个或更多的指针同时访问同一数据
  • 至少有一个指针被用来写入数据
  • 没有同步数据访问的机制

数据竞争会导致未定义行为,这种行为很可能超出我们的预期,难以在运行时追踪,并且难以诊断和修复。而 Rust 避免了这种情况的发生,因为它甚至不会编译存在数据竞争的代码!

很多时候,大括号可以帮我们解决一些编译不通过的问题,通过手动限制变量的作用域:


#![allow(unused)]
fn main() {
let mut s = String::from("hello");

{
    let r1 = &mut s;

} // r1 在这里离开了作用域,所以我们完全可以创建一个新的引用

let r2 = &mut s;
}

可变引用与不可变引用不能同时存在

下面的代码会导致一个错误:


#![allow(unused)]
fn main() {
let mut s = String::from("hello");

let r1 = &s; // 没问题
let r2 = &s; // 没问题
let r3 = &mut s; // 大问题

println!("{}, {}, and {}", r1, r2, r3);
}

错误如下:

error[E0502]: cannot borrow `s` as mutable because it is also borrowed as immutable
        // 无法借用可变 `s` 因为它已经被借用了不可变
 --> src/main.rs:6:14
  |
4 |     let r1 = &s; // 没问题
  |              -- immutable borrow occurs here 不可变借用发生在这里
5 |     let r2 = &s; // 没问题
6 |     let r3 = &mut s; // 大问题
  |              ^^^^^^ mutable borrow occurs here 可变借用发生在这里
7 |
8 |     println!("{}, {}, and {}", r1, r2, r3);
  |                                -- immutable borrow later used here 不可变借用在这里使用

其实这个也很好理解,正在借用不可变引用的用户,肯定不希望他借用的东西,被另外一个人莫名其妙改变了。多个不可变借用被允许是因为没有人会去试图修改数据,每个人都只读这一份数据而不做修改,因此不用担心数据被污染。

注意,引用的作用域 s 从创建开始,一直持续到它最后一次使用的地方,这个跟变量的作用域有所不同,变量的作用域从创建持续到某一个花括号 }

Rust 的编译器一直在优化,早期的时候,引用的作用域跟变量作用域是一致的,这对日常使用带来了很大的困扰,你必须非常小心的去安排可变、不可变变量的借用,免得无法通过编译,例如以下代码:

fn main() {
   let mut s = String::from("hello");

    let r1 = &s;
    let r2 = &s;
    println!("{} and {}", r1, r2);
    // 新编译器中,r1,r2作用域在这里结束

    let r3 = &mut s;
    println!("{}", r3);
} // 老编译器中,r1、r2、r3作用域在这里结束
  // 新编译器中,r3作用域在这里结束

在老版本的编译器中(Rust 1.31 前),将会报错,因为 r1r2 的作用域在花括号 } 处结束,那么 r3 的借用就会触发 无法同时借用可变和不可变 的规则。

但是在新的编译器中,该代码将顺利通过,因为 引用作用域的结束位置从花括号变成最后一次使用的位置,因此 r1 借用和 r2 借用在 println! 后,就结束了,此时 r3 可以顺利借用到可变引用。

NLL

对于这种编译器优化行为,Rust 专门起了一个名字 —— Non-Lexical Lifetimes(NLL),专门用于找到某个引用在作用域(})结束前就不再被使用的代码位置。

虽然这种借用错误有的时候会让我们很郁闷,但是你只要想想这是 Rust 提前帮你发现了潜在的 BUG,其实就开心了,虽然减慢了开发速度,但是从长期来看,大幅减少了后续开发和运维成本。

悬垂引用(Dangling References)

悬垂引用也叫做悬垂指针,意思为指针指向某个值后,这个值被释放掉了,而指针仍然存在,其指向的内存可能不存在任何值或已被其它变量重新使用。在 Rust 中编译器可以确保引用永远也不会变成悬垂状态:当你获取数据的引用后,编译器可以确保数据不会在引用结束前被释放,要想释放数据,必须先停止其引用的使用。

让我们尝试创建一个悬垂引用,Rust 会抛出一个编译时错误:

fn main() {
    let reference_to_nothing = dangle();
}

fn dangle() -> &String {
    let s = String::from("hello");

    &s
}

这里是错误:

error[E0106]: missing lifetime specifier
 --> src/main.rs:5:16
  |
5 | fn dangle() -> &String {
  |                ^ expected named lifetime parameter
  |
  = help: this function's return type contains a borrowed value, but there is no value for it to be borrowed from
help: consider using the `'static` lifetime
  |
5 | fn dangle() -> &'static String {
  |                ~~~~~~~~

错误信息引用了一个我们还未介绍的功能:生命周期(lifetimes)。不过,即使你不理解生命周期,也可以通过错误信息知道这段代码错误的关键信息:

this function's return type contains a borrowed value, but there is no value for it to be borrowed from.
该函数返回了一个借用的值,但是已经找不到它所借用值的来源

仔细看看 dangle 代码的每一步到底发生了什么:


#![allow(unused)]
fn main() {
fn dangle() -> &String { // dangle 返回一个字符串的引用

    let s = String::from("hello"); // s 是一个新字符串

    &s // 返回字符串 s 的引用
} // 这里 s 离开作用域并被丢弃。其内存被释放。
  // 危险!
}

因为 s 是在 dangle 函数内创建的,当 dangle 的代码执行完毕后,s 将被释放,但是此时我们又尝试去返回它的引用。这意味着这个引用会指向一个无效的 String,这可不对!

其中一个很好的解决方法是直接返回 String


#![allow(unused)]
fn main() {
fn no_dangle() -> String {
    let s = String::from("hello");

    s
}
}

这样就没有任何错误了,最终 String所有权被转移给外面的调用者

借用规则总结

总的来说,借用规则如下:

  • 同一时刻,你只能拥有要么一个可变引用,要么任意多个不可变引用
  • 引用必须总是有效的

课后练习

Rust By Practice,支持代码在线编辑和运行,并提供详细的习题解答