IterMut以及完整代码

上一章节中我们讲到了要为 List 实现三种类型的迭代器并实现了其中两种: IntoIterIter。下面再来看看最后一种 IterMut

再来回顾下 Iter 的实现:


#![allow(unused)]
fn main() {
impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> { /* stuff */ }
}
}

这段代码可以进行下脱糖( desugar ):


#![allow(unused)]
fn main() {
impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a T;

    fn next<'b>(&'b mut self) -> Option<&'a T> { /* stuff */ }
}
}

可以看出 next 方法的输入和输出之间的生命周期并没有关联,这样我们就可以无条件的一遍又一遍地调用 next:


#![allow(unused)]
fn main() {
let mut list = List::new();
list.push(1); list.push(2); list.push(3);

let mut iter = list.iter();
let x = iter.next().unwrap();
let y = iter.next().unwrap();
let z = iter.next().unwrap();
}

对于不可变借用而言,这种方式没有任何问题,因为不可变借用可以同时存在多个,但是如果是可变引用呢?因此,大家可能会以为使用安全代码来写 IterMut 是一件相当困难的事。但是令人诧异的是,事实上,我们可以使用安全的代码来为很多数据结构实现 IterMut

先将之前的代码修改成可变的:


#![allow(unused)]
fn main() {
pub struct IterMut<'a, T> {
    next: Option<&'a mut Node<T>>,
}

impl<T> List<T> {
    pub fn iter_mut(&self) -> IterMut<'_, T> {
        IterMut { next: self.head.as_deref_mut() }
    }
}

impl<'a, T> Iterator for IterMut<'a, T> {
    type Item = &'a mut T;

    fn next(&mut self) -> Option<Self::Item> {
        self.next.map(|node| {
            self.next = node.next.as_deref_mut();
            &mut node.elem
        })
    }
}
}
$ cargo build

error[E0596]: cannot borrow `self.head` as mutable, as it is behind a `&` reference
  --> src/second.rs:95:25
   |
94 |     pub fn iter_mut(&self) -> IterMut<'_, T> {
   |                     ----- help: consider changing this to be a mutable reference: `&mut self`
95 |         IterMut { next: self.head.as_deref_mut() }
   |                         ^^^^^^^^^ `self` is a `&` reference, so the data it refers to cannot be borrowed as mutable

error[E0507]: cannot move out of borrowed content
   --> src/second.rs:103:9
    |
103 |         self.next.map(|node| {
    |         ^^^^^^^^^ cannot move out of borrowed content

果不其然,两个错误发生了。第一错误看上去很清晰,甚至告诉了我们该如何解决:


#![allow(unused)]
fn main() {
pub fn iter_mut(&mut self) -> IterMut<'_, T> {
    IterMut { next: self.head.as_deref_mut() }
}
}

但是另一个好像就没那么容易了。但是之前的代码就可以工作啊,为何这里就不行了?

原因在于有些类型可以 Copy,有些不行。而Option 和不可变引用 &T 恰恰是可以 Copy 的,但尴尬的是,可变引用 &mut T 不可以,因此这里报错了。

因此我们需要使用 take 方法来处理这种情况:


#![allow(unused)]
fn main() {
fn next(&mut self) -> Option<Self::Item> {
    self.next.take().map(|node| {
        self.next = node.next.as_deref_mut();
        &mut node.elem
    })
}
}
$ cargo build

老规矩,来测试下:


#![allow(unused)]
fn main() {
#[test]
fn iter_mut() {
    let mut list = List::new();
    list.push(1); list.push(2); list.push(3);

    let mut iter = list.iter_mut();
    assert_eq!(iter.next(), Some(&mut 3));
    assert_eq!(iter.next(), Some(&mut 2));
    assert_eq!(iter.next(), Some(&mut 1));
}
}
$ cargo test

     Running target/debug/lists-5c71138492ad4b4a

running 6 tests
test first::test::basics ... ok
test second::test::basics ... ok
test second::test::iter_mut ... ok
test second::test::into_iter ... ok
test second::test::iter ... ok
test second::test::peek ... ok

test result: ok. 7 passed; 0 failed; 0 ignored; 0 measured

最终,我们完成了迭代器的功能,下面是完整的代码。

完整代码


#![allow(unused)]
fn main() {
pub struct List<T> {
    head: Link<T>,
}

type Link<T> = Option<Box<Node<T>>>;

struct Node<T> {
    elem: T,
    next: Link<T>,
}

impl<T> List<T> {
    pub fn new() -> Self {
        List { head: None }
    }

    pub fn push(&mut self, elem: T) {
        let new_node = Box::new(Node {
            elem: elem,
            next: self.head.take(),
        });

        self.head = Some(new_node);
    }

    pub fn pop(&mut self) -> Option<T> {
        self.head.take().map(|node| {
            self.head = node.next;
            node.elem
        })
    }

    pub fn peek(&self) -> Option<&T> {
        self.head.as_ref().map(|node| {
            &node.elem
        })
    }

    pub fn peek_mut(&mut self) -> Option<&mut T> {
        self.head.as_mut().map(|node| {
            &mut node.elem
        })
    }

    pub fn into_iter(self) -> IntoIter<T> {
        IntoIter(self)
    }

    pub fn iter(&self) -> Iter<'_, T> {
        Iter { next: self.head.as_deref() }
    }

    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
        IterMut { next: self.head.as_deref_mut() }
    }
}

impl<T> Drop for List<T> {
    fn drop(&mut self) {
        let mut cur_link = self.head.take();
        while let Some(mut boxed_node) = cur_link {
            cur_link = boxed_node.next.take();
        }
    }
}

pub struct IntoIter<T>(List<T>);

impl<T> Iterator for IntoIter<T> {
    type Item = T;
    fn next(&mut self) -> Option<Self::Item> {
        // access fields of a tuple struct numerically
        self.0.pop()
    }
}

pub struct Iter<'a, T> {
    next: Option<&'a Node<T>>,
}

impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a T;
    fn next(&mut self) -> Option<Self::Item> {
        self.next.map(|node| {
            self.next = node.next.as_deref();
            &node.elem
        })
    }
}

pub struct IterMut<'a, T> {
    next: Option<&'a mut Node<T>>,
}

impl<'a, T> Iterator for IterMut<'a, T> {
    type Item = &'a mut T;

    fn next(&mut self) -> Option<Self::Item> {
        self.next.take().map(|node| {
            self.next = node.next.as_deref_mut();
            &mut node.elem
        })
    }
}

#[cfg(test)]
mod test {
    use super::List;

    #[test]
    fn basics() {
        let mut list = List::new();

        // Check empty list behaves right
        assert_eq!(list.pop(), None);

        // Populate list
        list.push(1);
        list.push(2);
        list.push(3);

        // Check normal removal
        assert_eq!(list.pop(), Some(3));
        assert_eq!(list.pop(), Some(2));

        // Push some more just to make sure nothing's corrupted
        list.push(4);
        list.push(5);

        // Check normal removal
        assert_eq!(list.pop(), Some(5));
        assert_eq!(list.pop(), Some(4));

        // Check exhaustion
        assert_eq!(list.pop(), Some(1));
        assert_eq!(list.pop(), None);
    }

    #[test]
    fn peek() {
        let mut list = List::new();
        assert_eq!(list.peek(), None);
        assert_eq!(list.peek_mut(), None);
        list.push(1); list.push(2); list.push(3);

        assert_eq!(list.peek(), Some(&3));
        assert_eq!(list.peek_mut(), Some(&mut 3));

        list.peek_mut().map(|value| {
            *value = 42
        });

        assert_eq!(list.peek(), Some(&42));
        assert_eq!(list.pop(), Some(42));
    }

    #[test]
    fn into_iter() {
        let mut list = List::new();
        list.push(1); list.push(2); list.push(3);

        let mut iter = list.into_iter();
        assert_eq!(iter.next(), Some(3));
        assert_eq!(iter.next(), Some(2));
        assert_eq!(iter.next(), Some(1));
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn iter() {
        let mut list = List::new();
        list.push(1); list.push(2); list.push(3);

        let mut iter = list.iter();
        assert_eq!(iter.next(), Some(&3));
        assert_eq!(iter.next(), Some(&2));
        assert_eq!(iter.next(), Some(&1));
    }

    #[test]
    fn iter_mut() {
        let mut list = List::new();
        list.push(1); list.push(2); list.push(3);

        let mut iter = list.iter_mut();
        assert_eq!(iter.next(), Some(&mut 3));
        assert_eq!(iter.next(), Some(&mut 2));
        assert_eq!(iter.next(), Some(&mut 1));
    }
}
}