Box<T> 堆对象分配

关于作者帅不帅,估计争议还挺多的,但是如果说 Box<T> 是不是 Rust 中最常见的智能指针,那估计没有任何争议。因为 Box<T> 允许你将一个值分配到堆上,然后在栈上保留一个智能指针指向堆上的数据。

之前我们在所有权章节简单讲过堆栈的概念,这里再补充一些。

Rust 中的堆栈

高级语言 Python/Java 等往往会弱化堆栈的概念,但是要用好 C/C++/Rust,就必须对堆栈有深入的了解,原因是两者的内存管理方式不同:前者有 GC 垃圾回收机制,因此无需你去关心内存的细节。

栈内存从高位地址向下增长,且栈内存是连续分配的,一般来说操作系统对栈内存的大小都有限制,因此 C 语言中无法创建任意长度的数组。在 Rust 中,main 线程的栈大小是 8MB,普通线程是 2MB,在函数调用时会在其中创建一个临时栈空间,调用结束后 Rust 会让这个栈空间里的对象自动进入 Drop 流程,最后栈顶指针自动移动到上一个调用栈顶,无需程序员手动干预,因而栈内存申请和释放是非常高效的。

与栈相反,堆上内存则是从低位地址向上增长,堆内存通常只受物理内存限制,而且通常是不连续的,因此从性能的角度看,栈往往比堆更高。

相比其它语言,Rust 堆上对象还有一个特殊之处,它们都拥有一个所有者,因此受所有权规则的限制:当赋值时,发生的是所有权的转移(只需浅拷贝栈上的引用或智能指针即可),例如以下代码:

fn main() {
    let b = foo("world");
    println!("{}", b);
}

fn foo(x: &str) -> String {
    let a = "Hello, ".to_string() + x;
    a
}

foo 函数中,aString 类型,它其实是一个智能指针结构体,该智能指针存储在函数栈中,指向堆上的字符串数据。当被从 foo 函数转移给 main 中的 b 变量时,栈上的智能指针被复制一份赋予给 b,而底层数据无需发生改变,这样就完成了所有权从 foo 函数内部到 b 的转移。

堆栈的性能

很多人可能会觉得栈的性能肯定比堆高,其实未必。 由于我们在后面的性能专题会专门讲解堆栈的性能问题,因此这里就大概给出结论:

  • 小型数据,在栈上的分配性能和读取性能都要比堆上高
  • 中型数据,栈上分配性能高,但是读取性能和堆上并无区别,因为无法利用寄存器或 CPU 高速缓存,最终还是要经过一次内存寻址
  • 大型数据,只建议在堆上分配和使用

总之,栈的分配速度肯定比堆上快,但是读取速度往往取决于你的数据能不能放入寄存器或 CPU 高速缓存。 因此不要仅仅因为堆上性能不如栈这个印象,就总是优先选择栈,导致代码更复杂的实现。

Box 的使用场景

由于 Box 是简单的封装,除了将值存储在堆上外,并没有其它性能上的损耗。而性能和功能往往是鱼和熊掌,因此 Box 相比其它智能指针,功能较为单一,可以在以下场景中使用它:

  • 特意的将数据分配在堆上
  • 数据较大时,又不想在转移所有权时进行数据拷贝
  • 类型的大小在编译期无法确定,但是我们又需要固定大小的类型时
  • 特征对象,用于说明对象实现了一个特征,而不是某个特定的类型

以上场景,我们在本章将一一讲解,后面车速较快,请系好安全带。

使用 Box<T> 将数据存储在堆上

如果一个变量拥有一个数值 let a = 3,那变量 a 必然是存储在栈上的,那如果我们想要 a 的值存储在堆上就需要使用 Box<T>

fn main() {
    let a = Box::new(3);
    println!("a = {}", a); // a = 3

    // 下面一行代码将报错
    // let b = a + 1; // cannot add `{integer}` to `Box<{integer}>`
}

这样就可以创建一个智能指针指向了存储在堆上的 3,并且 a 持有了该指针。在本章的引言中,我们提到了智能指针往往都实现了 DerefDrop 特征,因此:

  • println! 可以正常打印出 a 的值,是因为它隐式地调用了 Deref 对智能指针 a 进行了解引用
  • 最后一行代码 let b = a + 1 报错,是因为在表达式中,我们无法自动隐式地执行 Deref 解引用操作,你需要使用 * 操作符 let b = *a + 1,来显式的进行解引用
  • a 持有的智能指针将在作用域结束(main 函数结束)时,被释放掉,这是因为 Box<T> 实现了 Drop 特征

以上的例子在实际代码中其实很少会存在,因为将一个简单的值分配到堆上并没有太大的意义。将其分配在栈上,由于寄存器、CPU 缓存的原因,它的性能将更好,而且代码可读性也更好。

避免栈上数据的拷贝

当栈上数据转移所有权时,实际上是把数据拷贝了一份,最终新旧变量各自拥有不同的数据,因此所有权并未转移。

而堆上则不然,底层数据并不会被拷贝,转移所有权仅仅是复制一份栈中的指针,再将新的指针赋予新的变量,然后让拥有旧指针的变量失效,最终完成了所有权的转移:

fn main() {
    // 在栈上创建一个长度为1000的数组
    let arr = [0;1000];
    // 将arr所有权转移arr1,由于 `arr` 分配在栈上,因此这里实际上是直接重新深拷贝了一份数据
    let arr1 = arr;

    // arr 和 arr1 都拥有各自的栈上数组,因此不会报错
    println!("{:?}", arr.len());
    println!("{:?}", arr1.len());

    // 在堆上创建一个长度为1000的数组,然后使用一个智能指针指向它
    let arr = Box::new([0;1000]);
    // 将堆上数组的所有权转移给 arr1,由于数据在堆上,因此仅仅拷贝了智能指针的结构体,底层数据并没有被拷贝
    // 所有权顺利转移给 arr1,arr 不再拥有所有权
    let arr1 = arr;
    println!("{:?}", arr1.len());
    // 由于 arr 不再拥有底层数组的所有权,因此下面代码将报错
    // println!("{:?}", arr.len());
}

从以上代码,可以清晰看出大块的数据为何应该放入堆中,此时 Box 就成为了我们最好的帮手。

将动态大小类型变为 Sized 固定大小类型

Rust 需要在编译时知道类型占用多少空间,如果一种类型在编译时无法知道具体的大小,那么被称为动态大小类型 DST。

其中一种无法在编译时知道大小的类型是递归类型:在类型定义中又使用到了自身,或者说该类型的值的一部分可以是相同类型的其它值,这种值的嵌套理论上可以无限进行下去,所以 Rust 不知道递归类型需要多少空间:


#![allow(unused)]
fn main() {
enum List {
    Cons(i32, List),
    Nil,
}
}

以上就是函数式语言中常见的 Cons List,它的每个节点包含一个 i32 值,还包含了一个新的 List,因此这种嵌套可以无限进行下去,Rust 认为该类型是一个 DST 类型,并给予报错:

error[E0072]: recursive type `List` has infinite size //递归类型 `List` 拥有无限长的大小
 --> src/main.rs:3:1
  |
3 | enum List {
  | ^^^^^^^^^ recursive type has infinite size
4 |     Cons(i32, List),
  |               ---- recursive without indirection

此时若想解决这个问题,就可以使用我们的 Box<T>


#![allow(unused)]
fn main() {
enum List {
    Cons(i32, Box<List>),
    Nil,
}
}

只需要将 List 存储到堆上,然后使用一个智能指针指向它,即可完成从 DST 到 Sized 类型(固定大小类型)的华丽转变。

特征对象

在 Rust 中,想实现不同类型组成的数组只有两个办法:枚举和特征对象,前者限制较多,因此后者往往是最常用的解决办法。

trait Draw {
    fn draw(&self);
}

struct Button {
    id: u32,
}
impl Draw for Button {
    fn draw(&self) {
        println!("这是屏幕上第{}号按钮", self.id)
    }
}

struct Select {
    id: u32,
}

impl Draw for Select {
    fn draw(&self) {
        println!("这个选择框贼难用{}", self.id)
    }
}

fn main() {
    let elems: Vec<Box<dyn Draw>> = vec![Box::new(Button { id: 1 }), Box::new(Select { id: 2 })];

    for e in elems {
        e.draw()
    }
}

以上代码将不同类型的 ButtonSelect 包装成 Draw 特征的特征对象,放入一个数组中,Box<dyn Draw> 就是特征对象。

其实,特征也是 DST 类型,而特征对象在做的就是将 DST 类型转换为固定大小类型。

Box 内存布局

先来看看 Vec<i32> 的内存布局:


#![allow(unused)]
fn main() {
(stack)    (heap)
┌──────┐   ┌───┐
│ vec1 │──→│ 1 │
└──────┘   ├───┤
           │ 2 │
           ├───┤
           │ 3 │
           ├───┤
           │ 4 │
           └───┘
}

之前提到过 VecString 都是智能指针,从上图可以看出,该智能指针存储在栈中,然后指向堆上的数组数据。

那如果数组中每个元素都是一个 Box 对象呢?来看看 Vec<Box<i32>> 的内存布局:


#![allow(unused)]
fn main() {
                    (heap)
(stack)    (heap)   ┌───┐
┌──────┐   ┌───┐ ┌─→│ 1 │
│ vec2 │──→│B1 │─┘  └───┘
└──────┘   ├───┤    ┌───┐
           │B2 │───→│ 2 │
           ├───┤    └───┘
           │B3 │─┐  ┌───┐
           ├───┤ └─→│ 3 │
           │B4 │─┐  └───┘
           └───┘ │  ┌───┐
                 └─→│ 4 │
                    └───┘
}

上面的 B1 代表被 Box 分配到堆上的值 1

可以看出智能指针 vec2 依然是存储在栈上,然后指针指向一个堆上的数组,该数组中每个元素都是一个 Box 智能指针,最终 Box 智能指针又指向了存储在堆上的实际值。

因此当我们从数组中取出某个元素时,取到的是对应的智能指针 Box,需要对该智能指针进行解引用,才能取出最终的值:

fn main() {
    let arr = vec![Box::new(1), Box::new(2)];
    let (first, second) = (&arr[0], &arr[1]);
    let sum = **first + **second;
}

以上代码有几个值得注意的点:

  • 使用 & 借用数组中的元素,否则会报所有权错误
  • 表达式不能隐式的解引用,因此必须使用 ** 做两次解引用,第一次将 &Box<i32> 类型转成 Box<i32>,第二次将 Box<i32> 转成 i32

Box::leak

Box 中还提供了一个非常有用的关联函数:Box::leak,它可以消费掉 Box 并且强制目标值从内存中泄漏,读者可能会觉得,这有啥用啊?

其实还真有点用,例如,你可以把一个 String 类型,变成一个 'static 生命周期的 &str 类型:

fn main() {
   let s = gen_static_str();
   println!("{}", s);
}

fn gen_static_str() -> &'static str{
    let mut s = String::new();
    s.push_str("hello, world");

    Box::leak(s.into_boxed_str())
}

在之前的代码中,如果 String 创建于函数中,那么返回它的唯一方法就是转移所有权给调用者 fn move_str() -> String,而通过 Box::leak 我们不仅返回了一个 &str 字符串切片,它还是 'static 生命周期的!

要知道真正具有 'static 生命周期的往往都是编译期就创建的值,例如 let v = "hello, world",这里 v 是直接打包到二进制可执行文件中的,因此该字符串具有 'static 生命周期,再比如 const 常量。

又有读者要问了,我还可以手动为变量标注 'static 啊。其实你标注的 'static 只是用来忽悠编译器的,但是超出作用域,一样被释放回收。而使用 Box::leak 就可以将一个运行期的值转为 'static

使用场景

光看上面的描述,大家可能还是云里雾里、一头雾水。

那么我说一个简单的场景,你需要一个在运行期初始化的值,但是可以全局有效,也就是和整个程序活得一样久,那么就可以使用 Box::leak,例如有一个存储配置的结构体实例,它是在运行期动态插入内容,那么就可以将其转为全局有效,虽然 Rc/Arc 也可以实现此功能,但是 Box::leak 是性能最高的。

总结

Box 背后是调用 jemalloc 来做内存管理,所以堆上的空间无需我们的手动管理。与此类似,带 GC 的语言中的对象也是借助于 Box 概念来实现的,一切皆对象 = 一切皆 Box, 只不过我们无需自己去 Box 罢了。

其实很多时候,编译器的鞭笞可以助我们更快的成长,例如所有权规则里的借用、move、生命周期就是编译器在教我们做人,哦不是,是教我们深刻理解堆栈、内存布局、作用域等等你在其它 GC 语言无需去关注的东西。刚开始是很痛苦,但是一旦熟悉了这套规则,写代码的效率和代码本身的质量将飞速上升,直到你可以用 Java 开发的效率写出 Java 代码不可企及的性能和安全性,最终 Rust 语言所谓的开发效率低、心智负担高,对你来说终究不是个事。

因此,不要怪 Rust,它只是在帮我们成为那个更好的程序员,而这些苦难终究成为我们走向优秀的垫脚石