HTML5 规范鼓励 Web 开发人员使用 UTF-8 字符集!情况并非总是如此。 早期网络的字符编码是 ASCII。
后来,从 HTML 2.0 到 HTML 4.01,ISO-8859-1 被认为是标准字符集。
随着 XML 和 HTML5,UTF-8 终于到来,解决了很多字符编码问题。
下表中的所有实体都将在所有浏览器中正确显示,包括 HTML4 和 HTML5 页面。
Char | Entity | Dec | Hex | Description |
---|---|---|---|---|
& | & | & | & | ampersand |
< | < | < | < | less than |
> | > | > | > | greater than |
|   |   | no-break space = non-breaking space | |
¡ | ¡ | ¡ | ¡ | inverted exclamation mark |
¢ | ¢ | ¢ | ¢ | cent sign |
£ | £ | £ | £ | pound sign |
¤ | ¤ | ¤ | ¤ | currency sign |
¥ | ¥ | ¥ | ¥ | yen sign = yuan sign |
¦ | ¦ | ¦ | ¦ | broken bar = broken vertical bar |
§ | § | § | § | section sign |
¨ | ¨ | ¨ | ¨ | diaeresis = spacing diaeresis |
© | © | © | © | copyright sign |
ª | ª | ª | ª | feminine ordinal indicator |
« | « | « | « | left-pointing double angle quotation mark = left pointing guillemet |
¬ | ¬ | ¬ | ¬ | not sign |
| ­ | ­ | ­ | soft hyphen = discretionary hyphen |
® | ® | ® | ® | registered sign = registered trade mark sign |
¯ | ¯ | ¯ | ¯ | macron = spacing macron = overline = APL overbar |
° | ° | ° | ° | degree sign |
± | ± | ± | ± | plus-minus sign = plus-or-minus sign |
² | ² | ² | ² | superscript two = superscript digit two = squared |
³ | ³ | ³ | ³ | superscript three = superscript digit three = cubed |
´ | ´ | ´ | ´ | acute accent = spacing acute |
µ | µ | µ | µ | micro sign |
¶ | ¶ | ¶ | ¶ | pilcrow sign = paragraph sign |
· | · | · | · | middle dot = Georgian comma = Greek middle dot |
¸ | ¸ | ¸ | ¸ | cedilla = spacing cedilla |
¹ | ¹ | ¹ | ¹ | superscript one = superscript digit one |
º | º | º | º | masculine ordinal indicator |
» | » | » | » | right-pointing double angle quotation mark = right pointing guillemet |
¼ | ¼ | ¼ | ¼ | vulgar fraction one quarter = fraction one quarter |
½ | ½ | ½ | ½ | vulgar fraction one half = fraction one half |
¾ | ¾ | ¾ | ¾ | vulgar fraction three quarters = fraction three quarters |
¿ | ¿ | ¿ | ¿ | inverted question mark = turned question mark |
À | À | À | À | latin capital letter A with grave = latin capital letter A grave |
Á | Á | Á | Á | latin capital letter A with acute |
 |  |  |  | latin capital letter A with circumflex |
à | à | à | à | latin capital letter A with tilde |
Ä | Ä | Ä | Ä | latin capital letter A with diaeresis |
Å | Å | Å | Å | latin capital letter A with ring above = latin capital letter A ring |
Æ | Æ | Æ | Æ | latin capital letter AE = latin capital ligature AE |
Ç | Ç | Ç | Ç | latin capital letter C with cedilla |
È | È | È | È | latin capital letter E with grave |
É | É | É | É | latin capital letter E with acute |
Ê | Ê | Ê | Ê | latin capital letter E with circumflex |
Ë | Ë | Ë | Ë | latin capital letter E with diaeresis |
Ì | Ì | Ì | Ì | latin capital letter I with grave |
Í | Í | Í | Í | latin capital letter I with acute |
Î | Î | Î | Î | latin capital letter I with circumflex |
Ï | Ï | Ï | Ï | latin capital letter I with diaeresis |
Ð | Ð | Ð | Ð | latin capital letter ETH |
Ñ | Ñ | Ñ | Ñ | latin capital letter N with tilde |
Ò | Ò | Ò | Ò | latin capital letter O with grave |
Ó | Ó | Ó | Ó | latin capital letter O with acute |
Ô | Ô | Ô | Ô | latin capital letter O with circumflex |
Õ | Õ | Õ | Õ | latin capital letter O with tilde |
Ö | Ö | Ö | Ö | latin capital letter O with diaeresis |
× | × | × | × | multiplication sign |
Ø | Ø | Ø | Ø | latin capital letter O with stroke = latin capital letter O slash |
Ù | Ù | Ù | Ù | latin capital letter U with grave |
Ú | Ú | Ú | Ú | latin capital letter U with acute |
Û | Û | Û | Û | latin capital letter U with circumflex |
Ü | Ü | Ü | Ü | latin capital letter U with diaeresis |
Ý | Ý | Ý | Ý | latin capital letter Y with acute |
Þ | Þ | Þ | Þ | latin capital letter THORN |
ß | ß | ß | ß | latin small letter sharp s = ess-zed |
à | à | à | à | latin small letter a with grave = latin small letter a grave |
á | á | á | á | latin small letter a with acute |
â | â | â | â | latin small letter a with circumflex |
ã | ã | ã | ã | latin small letter a with tilde |
ä | ä | ä | ä | latin small letter a with diaeresis |
å | å | å | å | latin small letter a with ring above = latin small letter a ring |
æ | æ | æ | æ | latin small letter ae = latin small ligature ae |
ç | ç | ç | ç | latin small letter c with cedilla |
è | è | è | è | latin small letter e with grave |
é | é | é | é | latin small letter e with acute |
ê | ê | ê | ê | latin small letter e with circumflex |
ë | ë | ë | ë | latin small letter e with diaeresis |
ì | ì | ì | ì | latin small letter i with grave |
í | í | í | í | latin small letter i with acute |
î | î | î | î | latin small letter i with circumflex |
ï | ï | ï | ï | latin small letter i with diaeresis |
ð | ð | ð | ð | latin small letter eth |
ñ | ñ | ñ | ñ | latin small letter n with tilde |
ò | ò | ò | ò | latin small letter o with grave |
ó | ó | ó | ó | latin small letter o with acute |
ô | ô | ô | ô | latin small letter o with circumflex |
õ | õ | õ | õ | latin small letter o with tilde |
ö | ö | ö | ö | latin small letter o with diaeresis |
÷ | ÷ | ÷ | ÷ | division sign |
ø | ø | ø | ø | latin small letter o with stroke = latin small letter o slash |
ù | ù | ù | ù | latin small letter u with grave |
ú | ú | ú | ú | latin small letter u with acute |
û | û | û | û | latin small letter u with circumflex |
ü | ü | ü | ü | latin small letter u with diaeresis |
ý | ý | ý | ý | latin small letter y with acute |
þ | þ | þ | þ | latin small letter thorn |
ÿ | ÿ | ÿ | ÿ | latin small letter y with diaeresis |
ƒ | ƒ | ƒ | ƒ | latin small f with hook = function = florin |
Α | Α | Α | Α | greek capital letter alpha |
Β | Β | Β | Β | greek capital letter beta |
Γ | Γ | Γ | Γ | greek capital letter gamma |
Δ | Δ | Δ | Δ | greek capital letter delta |
Ε | Ε | Ε | Ε | greek capital letter epsilon |
Ζ | Ζ | Ζ | Ζ | greek capital letter zeta |
Η | Η | Η | Η | greek capital letter eta |
Θ | Θ | Θ | Θ | greek capital letter theta |
Ι | Ι | Ι | Ι | greek capital letter iota |
Κ | Κ | Κ | Κ | greek capital letter kappa |
Λ | Λ | Λ | Λ | greek capital letter lambda |
Μ | Μ | Μ | Μ | greek capital letter mu |
Ν | Ν | Ν | Ν | greek capital letter nu |
Ξ | Ξ | Ξ | Ξ | greek capital letter xi |
Ο | Ο | Ο | Ο | greek capital letter omicron |
Π | Π | Π | Π | greek capital letter pi |
Ρ | Ρ | Ρ | Ρ | greek capital letter rho |
(not used) | ||||
Σ | Σ | Σ | Σ | greek capital letter sigma |
Τ | Τ | Τ | Τ | greek capital letter tau |
Υ | Υ | Υ | Υ | greek capital letter upsilon |
Φ | Φ | Φ | Φ | greek capital letter phi |
Χ | Χ | Χ | Χ | greek capital letter chi |
Ψ | Ψ | Ψ | Ψ | greek capital letter psi |
Ω | Ω | Ω | Ω | greek capital letter omega |
(not used) | ||||
α | α | α | α | greek smal letter alpha |
β | β | β | β | greek smal letter beta |
γ | γ | γ | γ | greek smal letter gamma |
δ | δ | δ | δ | greek smal letter delta |
ε | ε | ε | ε | greek smal letter epsilon |
ζ | ζ | ζ | ζ | greek smal letter zeta |
η | η | η | η | greek smal letter eta |
θ | θ | θ | θ | greek smal letter theta |
ι | ι | ι | ι | greek smal letter iota |
κ | κ | κ | κ | greek smal letter kappa |
λ | λ | λ | λ | greek smal letter lambda |
μ | μ | μ | μ | greek smal letter mu |
ν | ν | ν | ν | greek smal letter nu |
ξ | ξ | ξ | ξ | greek smal letter xi |
ο | ο | ο | ο | greek smal letter omicron |
π | π | π | π | greek smal letter pi |
ρ | ρ | ρ | ρ | greek smal letter rho |
ς | ς | ς | ς | greek smal letter final sigma |
σ | σ | σ | σ | greek smal letter sigma |
τ | τ | τ | τ | greek smal letter tau |
υ | υ | υ | υ | greek smal letter upsilon |
φ | φ | φ | φ | greek smal letter phi |
χ | χ | χ | χ | greek smal letter chi |
ψ | ψ | ψ | ψ | greek smal letter psi |
ω | ω | ω | ω | greek smal letter omega |
(not used) | ||||
ϑ | ϑ | ϑ | ϑ | greek smal letter theta symbol |
ϒ | ϒ | ϒ | ϒ | Greek upsilon with hook symbol |
(not used) | ||||
ϖ | ϖ | ϖ | ϖ | Greek pi symbol |
Char | Entity | Dec | Hex | Description |
---|---|---|---|---|
• | • | • | • | bullet = black small circle |
… | … | … | … | horizontal ellipsis = three dot leader |
′ | ′ | ′ | ′ | prime = minutes = feet |
″ | ″ | ″ | ″ | double prime = seconds = inches |
‾ | ‾ | ‾ | ‾ | overline = spacing overscore |
⁄ | ⁄ | ⁄ | ⁄ | fraction slash |
℘ | ℘ | ℘ | ℘ | script capital P = power set = Weierstrass p |
ℑ | ℑ | ℑ | ℑ | blackletter capital I = imaginary part |
ℜ | ℜ | ℜ | ℜ | blackletter capital R = real part symbol |
™ | ™ | ™ | ™ | trade mark sign |
ℵ | ℵ | ℵ | ℵ | alef symbol = first transfinite cardinal |
← | ← | ← | ← | leftwards arrow |
↑ | ↑ | ↑ | ↑ | upwards arrow |
→ | → | → | → | rightwards arrow |
↓ | ↓ | ↓ | ↓ | downwards arrow |
↔ | ↔ | ↔ | ↔ | left right arrow |
↵ | ↵ | ↵ | ↵ | downwards arrow with corner leftwards = carriage return |
⇐ | ⇐ | ⇐ | ⇐ | leftwards double arrow |
⇑ | ⇑ | ⇑ | ⇑ | upwards double arrow |
⇒ | ⇒ | ⇒ | ⇒ | rightwards double arrow |
⇓ | ⇓ | ⇓ | ⇓ | downwards double arrow |
⇔ | ⇔ | ⇔ | ⇔ | left right double arrow |
∀ | ∀ | ∀ | ∀ | for all |
∂ | ∂ | ∂ | ∂ | partial differential |
∃ | ∃ | ∃ | ∃ | there exists |
∅ | ∅ | ∅ | ∅ | empty set = null set = diameter |
∇ | ∇ | ∇ | ∇ | nabla = backward difference |
∈ | ∈ | ∈ | ∈ | element of |
∉ | ∉ | ∉ | ∉ | not an element of |
∋ | ∋ | ∋ | ∋ | contains as member |
∏ | ∏ | ∏ | ∏ | n-ary product = product sign |
∑ | ∑ | ∑ | ∑ | n-ary sumation |
− | − | − | − | minus sign |
∗ | ∗ | ∗ | ∗ | asterisk operator |
√ | √ | √ | √ | square root = radical sign |
∝ | ∝ | ∝ | ∝ | proportional to |
∞ | ∞ | ∞ | ∞ | infinity |
∠ | ∠ | ∠ | ∠ | angle |
∧ | ∧ | ∧ | ∧ | logical and = wedge |
∨ | ∨ | ∨ | ∨ | logical or = vee |
∩ | ∩ | ∩ | ∩ | intersection = cap |
∪ | ∪ | ∪ | ∪ | union = cup |
∫ | ∫ | ∫ | ∫ | integral |
∴ | ∴ | ∴ | ∴ | therefore |
∼ | ∼ | ∼ | ∼ | tilde operator = varies with = similar to |
≅ | ≅ | ≅ | ≅ | approximately equal to |
≈ | ≈ | ≈ | ≈ | almost equal to = asymptotic to |
≠ | ≠ | ≠ | ≠ | not equal to |
≡ | ≡ | ≡ | ≡ | identical to |
≤ | ≤ | ≤ | ≤ | less-than or equal to |
≥ | ≥ | ≥ | ≥ | greater-than or equal to |
⊂ | ⊂ | ⊂ | ⊂ | subset of |
⊃ | ⊃ | ⊃ | ⊃ | superset of |
⊄ | ⊄ | ⊄ | ⊄ | not a subset of |
⊆ | ⊆ | ⊆ | ⊆ | subset of or equal to |
⊇ | ⊇ | ⊇ | ⊇ | superset of or equal to |
⊕ | ⊕ | ⊕ | ⊕ | circled plus = direct sum |
⊗ | ⊗ | ⊗ | ⊗ | circled times = vector product |
⊥ | ⊥ | ⊥ | ⊥ | up tack = orthogonal to = perpendicular |
⋅ | ⋅ | ⋅ | ⋅ | dot operator |
⌈ | ⌈ | ⌈ | ⌈ | left ceiling = APL upstile |
⌉ | ⌉ | ⌉ | ⌉ | right ceiling |
⌊ | ⌊ | ⌊ | ⌊ | left floor = APL downstile |
⌋ | ⌋ | ⌋ | ⌋ | right floor |
〈 | ⟨ | 〈 | 〈 | left-pointing angle bracket = bra |
〉 | ⟩ | 〉 | 〉 | right-pointing angle bracket = ket |
◊ | ◊ | ◊ | ◊ | lozenge |
♠ | ♠ | ♠ | ♠ | black spade suit |
♣ | ♣ | ♣ | ♣ | black club suit = shamrock |
♥ | ♥ | ♥ | ♥ | black heart suit = valentine |
♦ | ♦ | ♦ | ♦ | black diamond suit |
旧版浏览器可能不支持下表中的所有 HTML5 实体。Chrome 和 Opera 支持良好,IE 11+ 和 Firefox 35+ 支持所有实体。
Character | Entity Name | Hex | Dec |
---|---|---|---|
Á | Aacute | 000C1 | 193 |
á | aacute | 000E1 | 225 |
Ă | Abreve | 00102 | 258 |
ă | abreve | 00103 | 259 |
∾ | ac | 0223E | 8766 |
∿ | acd | 0223F | 8767 |
∾̳ | acE | 0223E + 00333 | |
 | Acirc | 000C2 | 194 |
â | acirc | 000E2 | 226 |
´ | acute | 000B4 | 180 |
А | Acy | 00410 | 1040 |
а | acy | 00430 | 1072 |
Æ | AElig | 000C6 | 198 |
æ | aelig | 000E6 | 230 |
| af | 02061 | 8289 |
𝔄 | Afr | 1D504 | 120068 |
𝔞 | afr | 1D51E | 120094 |
À | Agrave | 000C0 | 192 |
à | agrave | 000E0 | 224 |
ℵ | alefsym | 02135 | 8501 |
ℵ | aleph | 02135 | 8501 |
Α | Alpha | 00391 | 913 |
α | alpha | 003B1 | 945 |
Ā | Amacr | 00100 | 256 |
ā | amacr | 00101 | 257 |
⨿ | amalg | 02A3F | 10815 |
& | amp | 00026 | 38 |
⩓ | And | 02A53 | 10835 |
∧ | and | 02227 | 8743 |
⩕ | andand | 02A55 | 10837 |
⩜ | andd | 02A5C | 10844 |
⩘ | andslope | 02A58 | 10840 |
⩚ | andv | 02A5A | 10842 |
∠ | ang | 02220 | 8736 |
⦤ | ange | 029A4 | 10660 |
∠ | angle | 02220 | 8736 |
∡ | angmsd | 02221 | 8737 |
⦨ | angmsdaa | 029A8 | 10664 |
⦩ | angmsdab | 029A9 | 10665 |
⦪ | angmsdac | 029AA | 10666 |
⦫ | angmsdad | 029AB | 10667 |
⦬ | angmsdae | 029AC | 10668 |
⦭ | angmsdaf | 029AD | 10669 |
⦮ | angmsdag | 029AE | 10670 |
⦯ | angmsdah | 029AF | 10671 |
∟ | angrt | 0221F | 8735 |
⊾ | angrtvb | 022BE | 8894 |
⦝ | angrtvbd | 0299D | 10653 |
∢ | angsph | 02222 | 8738 |
Å | angst | 000C5 | 197 |
⍼ | angzarr | 0237C | 9084 |
Ą | Aogon | 00104 | 260 |
ą | aogon | 00105 | 261 |
𝔸 | Aopf | 1D538 | 120120 |
𝕒 | aopf | 1D552 | 120146 |
≈ | ap | 02248 | 8776 |
⩯ | apacir | 02A6F | 10863 |
⩰ | apE | 02A70 | 10864 |
≊ | ape | 0224A | 8778 |
≋ | apid | 0224B | 8779 |
' | apos | 00027 | 39 |
| ApplyFunction | 02061 | 8289 |
≈ | approx | 02248 | 8776 |
≊ | approxeq | 0224A | 8778 |
Å | Aring | 000C5 | 197 |
å | aring | 000E5 | 229 |
𝒜 | Ascr | 1D49C | 119964 |
𝒶 | ascr | 1D4B6 | 119990 |
≔ | Assign | 02254 | 8788 |
* | ast | 0002A | 42 |
≈ | asymp | 02248 | 8776 |
≍ | asympeq | 0224D | 8781 |
à | Atilde | 000C3 | 195 |
ã | atilde | 000E3 | 227 |
Ä | Auml | 000C4 | 196 |
ä | auml | 000E4 | 228 |
∳ | awconint | 02233 | 8755 |
⨑ | awint | 02A11 | 10769 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
≌ | backcong | 0224C | 8780 |
϶ | backepsilon | 003F6 | 1014 |
‵ | backprime | 02035 | 8245 |
∽ | backsim | 0223D | 8765 |
⋍ | backsimeq | 022CD | 8909 |
∖ | Backslash | 02216 | 8726 |
⫧ | Barv | 02AE7 | 10983 |
⊽ | barvee | 022BD | 8893 |
⌅ | barwedge | 02305 | 8965 |
⎵ | bbrk | 023B5 | 9141 |
⎶ | bbrktbrk | 023B6 | 9142 |
≌ | bcong | 0224C | 8780 |
Б | Bcy | 00411 | 1041 |
б | bcy | 00431 | 1073 |
„ | bdquo | 0201E | 8222 |
∵ | because | 02235 | 8757 |
⦰ | bemptyv | 029B0 | 10672 |
϶ | bepsi | 003F6 | 1014 |
ℬ | bernou | 0212C | 8492 |
ℬ | Bernoullis | 0212C | 8492 |
Β | Beta | 00392 | 914 |
β | beta | 003B2 | 946 |
ℶ | beth | 02136 | 8502 |
≬ | between | 0226C | 8812 |
𝔅 | Bfr | 1D505 | 120069 |
𝔟 | bfr | 1D51F | 120095 |
⋂ | bigcap | 022C2 | 8898 |
◯ | bigcirc | 025EF | 9711 |
⋃ | bigcup | 022C3 | 8899 |
⨀ | bigodot | 02A00 | 10752 |
⨁ | bigoplus | 02A01 | 10753 |
⨂ | bigotimes | 02A02 | 10754 |
⨆ | bigsqcup | 02A06 | 10758 |
★ | bigstar | 02605 | 9733 |
▽ | bigtriangledown | 025BD | 9661 |
△ | bigtriangleup | 025B3 | 9651 |
⨄ | biguplus | 02A04 | 10756 |
⋁ | bigvee | 022C1 | 8897 |
⋀ | bigwedge | 022C0 | 8896 |
⤍ | bkarow | 0290D | 10509 |
⧫ | blacklozenge | 029EB | 10731 |
▪ | blacksquare | 025AA | 9642 |
▴ | blacktriangle | 025B4 | 9652 |
▾ | blacktriangledown | 025BE | 9662 |
◂ | blacktriangleleft | 025C2 | 9666 |
▸ | blacktriangleright | 025B8 | 9656 |
␣ | blank | 02423 | 9251 |
▒ | blk12 | 02592 | 9618 |
░ | blk14 | 02591 | 9617 |
▓ | blk34 | 02593 | 9619 |
█ | block | 02588 | 9608 |
=⃥ | bne | 0003D 020E5 | |
≡⃥ | bnequiv | 02261 020E5 | |
⫭ | bNot | 02AED | 10989 |
⌐ | bnot | 02310 | 8976 |
𝔹 | Bopf | 1D539 | 120121 |
𝕓 | bopf | 1D553 | 120147 |
⊥ | bot | 022A5 | 8869 |
⊥ | bottom | 022A5 | 8869 |
⋈ | bowtie | 022C8 | 8904 |
⧉ | boxbox | 029C9 | 10697 |
╗ | boxDL | 02557 | 9559 |
╖ | boxDl | 02556 | 9558 |
╕ | boxdL | 02555 | 9557 |
┐ | boxdl | 02510 | 9488 |
╔ | boxDR | 02554 | 9556 |
╓ | boxDr | 02553 | 9555 |
╒ | boxdR | 02552 | 9554 |
┌ | boxdr | 0250C | 9484 |
═ | boxH | 02550 | 9552 |
─ | boxh | 02500 | 9472 |
╦ | boxHD | 02566 | 9574 |
╤ | boxHd | 02564 | 9572 |
╥ | boxhD | 02565 | 9573 |
┬ | boxhd | 0252C | 9516 |
╩ | boxHU | 02569 | 9577 |
╧ | boxHu | 02567 | 9575 |
╨ | boxhU | 02568 | 9576 |
┴ | boxhu | 02534 | 9524 |
⊟ | boxminus | 0229F | 8863 |
⊞ | boxplus | 0229E | 8862 |
⊠ | boxtimes | 022A0 | 8864 |
╝ | boxUL | 0255D | 9565 |
╜ | boxUl | 0255C | 9564 |
╛ | boxuL | 0255B | 9563 |
┘ | boxul | 02518 | 9496 |
╚ | boxUR | 0255A | 9562 |
╙ | boxUr | 02559 | 9561 |
╘ | boxuR | 02558 | 9560 |
└ | boxur | 02514 | 9492 |
║ | boxV | 02551 | 9553 |
│ | boxv | 02502 | 9474 |
╬ | boxVH | 0256C | 9580 |
╫ | boxVh | 0256B | 9579 |
╪ | boxvH | 0256A | 9578 |
┼ | boxvh | 0253C | 9532 |
╣ | boxVL | 02563 | 9571 |
╢ | boxVl | 02562 | 9570 |
╡ | boxvL | 02561 | 9569 |
┤ | boxvl | 02524 | 9508 |
╠ | boxVR | 02560 | 9568 |
╟ | boxVr | 0255F | 9567 |
╞ | boxvR | 0255E | 9566 |
├ | boxvr | 0251C | 9500 |
‵ | bprime | 02035 | 8245 |
˘ | Breve | 002D8 | 728 |
˘ | breve | 002D8 | 728 |
¦ | brvbar | 000A6 | 166 |
ℬ | Bscr | 0212C | 8492 |
𝒷 | bscr | 1D4B7 | 119991 |
⁏ | bsemi | 0204F | 8271 |
∽ | bsim | 0223D | 8765 |
⋍ | bsime | 022CD | 8909 |
\ | bsol | 0005C | 92 |
⧅ | bsolb | 029C5 | 10693 |
⟈ | bsolhsub | 027C8 | 10184 |
• | bull | 02022 | 8226 |
• | bullet | 02022 | 8226 |
≎ | bump | 0224E | 8782 |
⪮ | bumpE | 02AAE | 10926 |
≏ | bumpe | 0224F | 8783 |
≎ | Bumpeq | 0224E | 8782 |
≏ | bumpeq | 0224F | 8783 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
Ć | Cacute | 00106 | 262 |
ć | cacute | 00107 | 263 |
⋒ | Cap | 022D2 | 8914 |
∩ | cap | 02229 | 8745 |
⩄ | capand | 02A44 | 10820 |
⩉ | capbrcup | 02A49 | 10825 |
⩋ | capcap | 02A4B | 10827 |
⩇ | capcup | 02A47 | 10823 |
⩀ | capdot | 02A40 | 10816 |
ⅅ | CapitalDifferentialD | 02145 | 8517 |
∩︀ | caps | 02229 0FE00 | 8745 |
⁁ | caret | 02041 | 8257 |
ˇ | caron | 002C7 | 711 |
ℭ | Cayleys | 0212D | 8493 |
⩍ | ccaps | 02A4D | 10829 |
Č | Ccaron | 0010C | 268 |
č | ccaron | 0010D | 269 |
Ç | Ccedil | 000C7 | 199 |
ç | ccedil | 000E7 | 231 |
Ĉ | Ccirc | 00108 | 264 |
ĉ | ccirc | 00109 | 265 |
∰ | Cconint | 02230 | 8752 |
⩌ | ccups | 02A4C | 10828 |
⩐ | ccupssm | 02A50 | 10832 |
Ċ | Cdot | 0010A | 266 |
ċ | cdot | 0010B | 267 |
¸ | cedil | 000B8 | 184 |
¸ | Cedilla | 000B8 | 184 |
⦲ | cemptyv | 029B2 | 10674 |
¢ | cent | 000A2 | 162 |
· | CenterDot | 000B7 | 183 |
· | centerdot | 000B7 | 183 |
ℭ | Cfr | 0212D | 8493 |
𝔠 | cfr | 1D520 | 120096 |
Ч | CHcy | 00427 | 1063 |
ч | chcy | 00447 | 1095 |
✓ | check | 02713 | 10003 |
✓ | checkmark | 02713 | 10003 |
Χ | Chi | 003A7 | 935 |
χ | chi | 003C7 | 967 |
○ | cir | 025CB | 9675 |
ˆ | circ | 002C6 | 710 |
≗ | circeq | 02257 | 8791 |
↺ | circlearrowleft | 021BA | 8634 |
↻ | circlearrowright | 021BB | 8635 |
⊛ | circledast | 0229B | 8859 |
⊚ | circledcirc | 0229A | 8858 |
⊝ | circleddash | 0229D | 8861 |
⊙ | CircleDot | 02299 | 8857 |
® | circledR | 000AE | 174 |
Ⓢ | circledS | 024C8 | 9416 |
⊖ | CircleMinus | 02296 | 8854 |
⊕ | CirclePlus | 02295 | 8853 |
⊗ | CircleTimes | 02297 | 8855 |
⧃ | cirE | 029C3 | 10691 |
≗ | cire | 02257 | 8791 |
⨐ | cirfnint | 02A10 | 10768 |
⫯ | cirmid | 02AEF | 10991 |
⧂ | cirscir | 029C2 | 10690 |
∲ | cwconint | 02232 | 8754 |
∲ | ClockwiseContourIntegral | 02232 | 8754 |
” | CloseCurlyDoubleQuote | 0201D | 8221 |
’ | CloseCurlyQuote | 02019 | 8217 |
♣ | clubs | 02663 | 9827 |
♣ | clubsuit | 02663 | 9827 |
∷ | Colon | 02237 | 8759 |
: | colon | 0003A | 58 |
⩴ | Colone | 02A74 | 10868 |
≔ | colone | 02254 | 8788 |
≔ | coloneq | 02254 | 8788 |
, | comma | 0002C | 44 |
@ | commat | 00040 | 64 |
∁ | comp | 02201 | 8705 |
∘ | compfn | 02218 | 8728 |
∁ | complement | 02201 | 8705 |
ℂ | complexes | 02102 | 8450 |
≅ | cong | 02245 | 8773 |
⩭ | congdot | 02A6D | 10861 |
≡ | Congruent | 02261 | 8801 |
∯ | Conint | 0222F | 8751 |
∮ | conint | 0222E | 8750 |
∮ | ContourIntegral | 0222E | 8750 |
ℂ | Copf | 02102 | 8450 |
𝕔 | copf | 1D554 | 120148 |
∐ | coprod | 02210 | 8720 |
∐ | Coproduct | 02210 | 8720 |
© | copy | 000A9 | 169 |
℗ | copysr | 02117 | 8471 |
↵ | crarr | 021B5 | 8629 |
⨯ | Cross | 02A2F | 10799 |
✗ | cross | 02717 | 10007 |
𝒞 | Cscr | 1D49E | 119966 |
𝒸 | cscr | 1D4B8 | 119992 |
⫏ | csub | 02ACF | 10959 |
⫑ | csube | 02AD1 | 10961 |
⫐ | csup | 02AD0 | 10960 |
⫒ | csupe | 02AD2 | 10962 |
⋯ | ctdot | 022EF | 8943 |
⤸ | cudarrl | 02938 | 10552 |
⤵ | cudarrr | 02935 | 10549 |
⋞ | cuepr | 022DE | 8926 |
⋟ | cuesc | 022DF | 8927 |
↶ | cularr | 021B6 | 8630 |
⤽ | cularrp | 0293D | 10557 |
⋓ | Cup | 022D3 | 8915 |
∪ | cup | 0222A | 8746 |
⩈ | cupbrcap | 02A48 | 10824 |
≍ | CupCap | 0224D | 8781 |
⩆ | cupcap | 02A46 | 10822 |
⩊ | cupcup | 02A4A | 10826 |
⊍ | cupdot | 0228D | 8845 |
⩅ | cupor | 02A45 | 10821 |
∪︀ | cups | 0222A + 0FE00 | 8746 |
↷ | curarr | 021B7 | 8631 |
⤼ | curarrm | 0293C | 10556 |
⋞ | curlyeqprec | 022DE | 8926 |
⋟ | curlyeqsucc | 022DF | 8927 |
⋎ | curlyvee | 022CE | 8910 |
⋏ | curlywedge | 022CF | 8911 |
¤ | curren | 000A4 | 164 |
↶ | curvearrowleft | 021B6 | 8630 |
↷ | curvearrowright | 021B7 | 8631 |
⋎ | cuvee | 022CE | 8910 |
⋏ | cuwed | 022CF | 8911 |
∲ | cwconint | 02232 | 8754 |
∱ | cwint | 02231 | 8753 |
⌭ | cylcty | 0232D | 9005 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
† | dagger | 02020 | 8224 |
ℸ | daleth | 02138 | 8504 |
↡ | Darr | 021A1 | 8609 |
⇓ | dArr | 021D3 | 8659 |
↓ | darr | 02193 | 8595 |
‐ | dash | 02010 | 8208 |
⫤ | Dashv | 02AE4 | 10980 |
⊣ | dashv | 022A3 | 8867 |
⤏ | dbkarow | 0290F | 10511 |
˝ | dblac | 002DD | 733 |
Ď | Dcaron | 0010E | 270 |
ď | dcaron | 0010F | 271 |
Д | Dcy | 00414 | 1044 |
д | dcy | 00434 | 1076 |
ⅅ | DD | 02145 | 8517 |
ⅆ | dd | 02146 | 8518 |
‡ | ddagger | 02021 | 8225 |
⇊ | ddarr | 021CA | 8650 |
⤑ | DDotrahd | 02911 | 10513 |
⩷ | ddotseq | 02A77 | 10871 |
° | deg | 000B0 | 176 |
∇ | Del | 02207 | 8711 |
Δ | Delta | 00394 | 916 |
δ | delta | 003B4 | 948 |
⦱ | demptyv | 029B1 | 10673 |
⥿ | dfisht | 0297F | 10623 |
𝔇 | Dfr | 1D507 | 120071 |
𝔡 | dfr | 1D521 | 120097 |
⥥ | dHar | 02965 | 10597 |
⇃ | dharl | 021C3 | 8643 |
⇂ | dharr | 021C2 | 8642 |
´ | DiacriticalAcute | 000B4 | 180 |
˙ | DiacriticalDot | 002D9 | 729 |
˝ | DiacriticalDoubleAcute | 002DD | 733 |
` | DiacriticalGrave | 00060 | 96 |
˜ | DiacriticalTilde | 002DC | 732 |
⋄ | diam | 022C4 | 8900 |
⋄ | Diamond | 022C4 | 8900 |
⋄ | diamond | 022C4 | 8900 |
♦ | diamondsuit | 02666 | 9830 |
♦ | diams | 02666 | 9830 |
¨ | die | 000A8 | 168 |
ⅆ | DifferentialD | 02146 | 8518 |
ϝ | digamma | 003DD | 989 |
⋲ | disin | 022F2 | 8946 |
÷ | div | 000F7 | 247 |
÷ | divide | 000F7 | 247 |
⋇ | divideontimes | 022C7 | 8903 |
⋇ | divonx | 022C7 | 8903 |
Ђ | DJcy | 00402 | 1026 |
ђ | djcy | 00452 | 1106 |
⌞ | dlcorn | 0231E | 8990 |
⌍ | dlcrop | 0230D | 8973 |
$ | dollar | 00024 | 36 |
𝔻 | Dopf | 1D53B | 120123 |
𝕕 | dopf | 1D555 | 120149 |
¨ | Dot | 000A8 | 168 |
˙ | dot | 002D9 | 729 |
⃜ | DotDot | 020DC | 8412 |
≐ | doteq | 02250 | 8784 |
≑ | doteqdot | 02251 | 8785 |
≐ | DotEqual | 02250 | 8784 |
∸ | dotminus | 02238 | 8760 |
∔ | dotplus | 02214 | 8724 |
⊡ | dotsquare | 022A1 | 8865 |
⌆ | doublebarwedge | 02306 | 8966 |
∯ | DoubleContourIntegral | 0222F | 8751 |
¨ | DoubleDot | 000A8 | 168 |
⇓ | DoubleDownArrow | 021D3 | 8659 |
⇐ | DoubleLeftArrow | 021D0 | 8656 |
⇔ | DoubleLeftRightArrow | 021D4 | 8660 |
⫤ | DoubleLeftTee | 02AE4 | 10980 |
⟸ | DoubleLongLeftArrow | 027F8 | 10232 |
⟺ | DoubleLongLeftRightArrow | 027FA | 10234 |
⟹ | DoubleLongRightArrow | 027F9 | 10233 |
⇒ | DoubleRightArrow | 021D2 | 8658 |
⊨ | DoubleRightTee | 022A8 | 8872 |
⇑ | DoubleUpArrow | 021D1 | 8657 |
⇕ | DoubleUpDownArrow | 021D5 | 8661 |
∥ | DoubleVerticalBar | 02225 | 8741 |
↓ | DownArrow | 02193 | 8595 |
⇓ | Downarrow | 021D3 | 8659 |
↓ | downarrow | 02193 | 8595 |
⤓ | DownArrowBar | 02913 | 10515 |
⇵ | DownArrowUpArrow | 021F5 | 8693 |
̑ | DownBreve | 00311 | 785 |
⇊ | downdownarrows | 021CA | 8650 |
⇃ | downharpoonleft | 021C3 | 8643 |
⇂ | downharpoonright | 021C2 | 8642 |
⥐ | DownLeftRightVector | 02950 | 10576 |
⥞ | DownLeftTeeVector | 0295E | 10590 |
↽ | DownLeftVector | 021BD | 8637 |
⥖ | DownLeftVectorBar | 02956 | 10582 |
⥟ | DownRightTeeVector | 0295F | 10591 |
⇁ | DownRightVector | 021C1 | 8641 |
⥗ | DownRightVectorBar | 02957 | 10583 |
⊤ | DownTee | 022A4 | 8868 |
↧ | DownTeeArrow | 021A7 | 8615 |
⤐ | drbkarow | 02910 | 10512 |
⌟ | drcorn | 0231F | 8991 |
⌌ | drcrop | 0230C | 8972 |
𝒟 | Dscr | 1D49F | 119967 |
𝒹 | dscr | 1D4B9 | 119993 |
Ѕ | DScy | 00405 | 1029 |
ѕ | dscy | 00455 | 1109 |
⧶ | dsol | 029F6 | 10742 |
Đ | Dstrok | 00110 | 272 |
đ | dstrok | 00111 | 273 |
⋱ | dtdot | 022F1 | 8945 |
▿ | dtri | 025BF | 9663 |
▾ | dtrif | 025BE | 9662 |
⇵ | duarr | 021F5 | 8693 |
⥯ | duhar | 0296F | 10607 |
⦦ | dwangle | 029A6 | 10662 |
Џ | DZcy | 0040F | 1039 |
џ | dzcy | 0045F | 1119 |
⟿ | dzigrarr | 027FF | 10239 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
É | Eacute | 000C9 | 201 |
é | eacute | 000E9 | 233 |
⩮ | easter | 02A6E | 10862 |
Ě | Ecaron | 0011A | 282 |
ě | ecaron | 0011B | 283 |
≖ | ecir | 02256 | 8790 |
Ê | Ecirc | 000CA | 202 |
ê | ecirc | 000EA | 234 |
≕ | ecolon | 02255 | 8789 |
Э | Ecy | 0042D | 1069 |
э | ecy | 0044D | 1101 |
⩷ | eDDot | 02A77 | 10871 |
Ė | Edot | 00116 | 278 |
≑ | eDot | 02251 | 8785 |
ė | edot | 00117 | 279 |
ⅇ | ee | 02147 | 8519 |
≒ | efDot | 02252 | 8786 |
𝔈 | Efr | 1D508 | 120072 |
𝔢 | efr | 1D522 | 120098 |
⪚ | eg | 02A9A | 10906 |
È | Egrave | 000C8 | 200 |
è | egrave | 000E8 | 232 |
⪖ | egs | 02A96 | 10902 |
⪘ | egsdot | 02A98 | 10904 |
⪙ | el | 02A99 | 10905 |
∈ | Element | 02208 | 8712 |
⏧ | elinters | 023E7 | 9191 |
ℓ | ell | 02113 | 8467 |
⪕ | els | 02A95 | 10901 |
⪗ | elsdot | 02A97 | 10903 |
Ē | Emacr | 00112 | 274 |
ē | emacr | 00113 | 275 |
∅ | empty | 02205 | 8709 |
∅ | emptyset | 02205 | 8709 |
◻ | EmptySmallSquare | 025FB | 9723 |
∅ | emptyv | 02205 | 8709 |
▫ | EmptyVerySmallSquare | 025AB | 9643 |
emsp | 02003 | 8195 | |
emsp13 | 02004 | 8196 | |
emsp14 | 02005 | 8197 | |
Ŋ | ENG | 0014A | 330 |
ŋ | eng | 0014B | 331 |
ensp | 02002 | 8194 | |
Ę | Eogon | 00118 | 280 |
ę | eogon | 00119 | 281 |
𝔼 | Eopf | 1D53C | 120124 |
𝕖 | eopf | 1D556 | 120150 |
⋕ | epar | 022D5 | 8917 |
⧣ | eparsl | 029E3 | 10723 |
⩱ | eplus | 02A71 | 10865 |
ε | epsi | 003B5 | 949 |
Ε | Epsilon | 00395 | 917 |
ε | epsilon | 003B5 | 949 |
ϵ | epsiv | 003F5 | 1013 |
≖ | eqcirc | 02256 | 8790 |
≕ | eqcolon | 02255 | 8789 |
≂ | eqsim | 02242 | 8770 |
⪖ | eqslantgtr | 02A96 | 10902 |
⪕ | eqslantless | 02A95 | 10901 |
⩵ | Equal | 02A75 | 10869 |
= | equals | 0003D | 61 |
≂ | EqualTilde | 02242 | 8770 |
≟ | equest | 0225F | 8799 |
⇌ | Equilibrium | 021CC | 8652 |
≡ | equiv | 02261 | 8801 |
⩸ | equivDD | 02A78 | 10872 |
⧥ | eqvparsl | 029E5 | 10725 |
⥱ | erarr | 02971 | 10609 |
≓ | erDot | 02253 | 8787 |
ℰ | Escr | 02130 | 8496 |
ℯ | escr | 0212F | 8495 |
≐ | esdot | 02250 | 8784 |
⩳ | Esim | 02A73 | 10867 |
≂ | esim | 02242 | 8770 |
Η | Eta | 00397 | 919 |
η | eta | 003B7 | 951 |
Ð | ETH | 000D0 | 208 |
ð | eth | 000F0 | 240 |
Ë | Euml | 000CB | 203 |
ë | euml | 000EB | 235 |
€ | euro | 020AC | 8364 |
! | excl | 00021 | 33 |
∃ | Exists | 02203 | 8707 |
∃ | exist | 02203 | 8707 |
ℰ | expectation | 02130 | 8496 |
ⅇ | ExponentialE | 02147 | 8519 |
ⅇ | exponentiale | 02147 | 8519 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
≒ | fallingdotseq | 02252 | 8786 |
Ф | Fcy | 00424 | 1060 |
ф | fcy | 00444 | 1092 |
♀ | female | 02640 | 9792 |
ffi | ffilig | 0FB03 | 64259 |
ff | fflig | 0FB00 | 64256 |
ffl | ffllig | 0FB04 | 64260 |
𝔉 | Ffr | 1D509 | 120073 |
𝔣 | ffr | 1D523 | 120099 |
fi | filig | 0FB01 | 64257 |
◼ | FilledSmallSquare | 025FC | 9724 |
▪ | FilledVerySmallSquare | 025AA | 9642 |
fj | fjlig | 00066 + 0006A | |
♭ | flat | 0266D | 9837 |
fl | fllig | 0FB02 | 64258 |
▱ | fltns | 025B1 | 9649 |
ƒ | fnof | 00192 | 402 |
𝔽 | Fopf | 1D53D | 120125 |
𝕗 | fopf | 1D557 | 120151 |
∀ | ForAll | 02200 | 8704 |
∀ | forall | 02200 | 8704 |
⋔ | fork | 022D4 | 8916 |
⫙ | forkv | 02AD9 | 10969 |
ℱ | Fouriertrf | 02131 | 8497 |
⨍ | fpartint | 02A0D | 10765 |
½ | frac12 | 000BD | 189 |
⅓ | frac13 | 02153 | 8531 |
¼ | frac14 | 000BC | 188 |
⅕ | frac15 | 02155 | 8533 |
⅙ | frac16 | 02159 | 8537 |
⅛ | frac18 | 0215B | 8539 |
⅔ | frac23 | 02154 | 8532 |
⅖ | frac25 | 02156 | 8534 |
¾ | frac34 | 000BE | 190 |
⅗ | frac35 | 02157 | 8535 |
⅜ | frac38 | 0215C | 8540 |
⅘ | frac45 | 02158 | 8536 |
⅚ | frac56 | 0215A | 8538 |
⅝ | frac58 | 0215D | 8541 |
⅞ | frac78 | 0215E | 8542 |
⁄ | frasl | 02044 | 8260 |
⌢ | frown | 02322 | 8994 |
ℱ | Fscr | 02131 | 8497 |
𝒻 | fscr | 1D4BB | 119995 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
ǵ | gacute | 001F5 | 501 |
Γ | Gamma | 00393 | 915 |
γ | gamma | 003B3 | 947 |
Ϝ | Gammad | 003DC | 988 |
ϝ | gammad | 003DD | 989 |
⪆ | gap | 02A86 | 10886 |
Ğ | Gbreve | 0011E | 286 |
ğ | gbreve | 0011F | 287 |
Ģ | Gcedil | 00122 | 290 |
Ĝ | Gcirc | 0011C | 284 |
ĝ | gcirc | 0011D | 285 |
Г | Gcy | 00413 | 1043 |
г | gcy | 00433 | 1075 |
Ġ | Gdot | 00120 | 288 |
ġ | gdot | 00121 | 289 |
≧ | gE | 02267 | 8807 |
≥ | ge | 02265 | 8805 |
⪌ | gEl | 02A8C | 10892 |
⋛ | gel | 022DB | 8923 |
≥ | geq | 02265 | 8805 |
≧ | geqq | 02267 | 8807 |
⩾ | geqslant | 02A7E | 10878 |
⩾ | ges | 02A7E | 10878 |
⪩ | gescc | 02AA9 | 10921 |
⪀ | gesdot | 02A80 | 10880 |
⪂ | gesdoto | 02A82 | 10882 |
⪄ | gesdotol | 02A84 | 10884 |
⋛︀ | gesl | 022DB + 0FE00 | 8923 |
⪔ | gesles | 02A94 | 10900 |
𝔊 | Gfr | 1D50A | 120074 |
𝔤 | gfr | 1D524 | 120100 |
⋙ | Gg | 022D9 | 8921 |
≫ | gg | 0226B | 8811 |
⋙ | ggg | 022D9 | 8921 |
ℷ | gimel | 02137 | 8503 |
Ѓ | GJcy | 00403 | 1027 |
ѓ | gjcy | 00453 | 1107 |
≷ | gl | 02277 | 8823 |
⪥ | gla | 02AA5 | 10917 |
⪒ | glE | 02A92 | 10898 |
⪤ | glj | 02AA4 | 10916 |
⪊ | gnap | 02A8A | 10890 |
⪊ | gnapprox | 02A8A | 10890 |
≩ | gnE | 02269 | 8809 |
⪈ | gne | 02A88 | 10888 |
⪈ | gneq | 02A88 | 10888 |
≩ | gneqq | 02269 | 8809 |
⋧ | gnsim | 022E7 | 8935 |
𝔾 | Gopf | 1D53E | 120126 |
𝕘 | gopf | 1D558 | 120152 |
` | grave | 00060 | 96 |
≥ | GreaterEqual | 02265 | 8805 |
⋛ | GreaterEqualLess | 022DB | 8923 |
≧ | GreaterFullEqual | 02267 | 8807 |
⪢ | GreaterGreater | 02AA2 | 10914 |
≷ | GreaterLess | 02277 | 8823 |
⩾ | GreaterSlantEqual | 02A7E | 10878 |
≳ | GreaterTilde | 02273 | 8819 |
𝒢 | Gscr | 1D4A2 | 119970 |
ℊ | gscr | 0210A | 8458 |
≳ | gsim | 02273 | 8819 |
⪎ | gsime | 02A8E | 10894 |
⪐ | gsiml | 02A90 | 10896 |
> | GT | 0003E | 62 |
≫ | Gt | 0226B | 8811 |
⪧ | gtcc | 02AA7 | 10919 |
⩺ | gtcir | 02A7A | 10874 |
⋗ | gtdot | 022D7 | 8919 |
⦕ | gtlPar | 02995 | 10645 |
⩼ | gtquest | 02A7C | 10876 |
⪆ | gtrapprox | 02A86 | 10886 |
⥸ | gtrarr | 02978 | 10616 |
⋗ | gtrdot | 022D7 | 8919 |
⋛ | gtreqless | 022DB | 8923 |
⪌ | gtreqqless | 02A8C | 10892 |
≷ | gtrless | 02277 | 8823 |
≳ | gtrsim | 02273 | 8819 |
≩︀ | gvertneqq | 02269 + 0FE00 | 8809 |
≩︀ | gvnE | 02269 + 0FE00 | 8809 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
ˇ | Hacek | 002C7 | 711 |
hairsp | 0200A | 8202 | |
½ | half | 000BD | 189 |
ℋ | hamilt | 0210B | 8459 |
Ъ | HARDcy | 0042A | 1066 |
ъ | hardcy | 0044A | 1098 |
⇔ | hArr | 021D4 | 8660 |
↔ | harr | 02194 | 8596 |
⥈ | harrcir | 02948 | 10568 |
↭ | harrw | 021AD | 8621 |
^ | Hat | 0005E | 94 |
ℏ | hbar | 0210F | 8463 |
Ĥ | Hcirc | 00124 | 292 |
ĥ | hcirc | 00125 | 293 |
♥ | hearts | 02665 | 9829 |
♥ | heartsuit | 02665 | 9829 |
… | hellip | 02026 | 8230 |
⊹ | hercon | 022B9 | 8889 |
ℌ | Hfr | 0210C | 8460 |
𝔥 | hfr | 1D525 | 120101 |
ℋ | HilbertSpace | 0210B | 8459 |
⤥ | hksearow | 02925 | 10533 |
⤦ | hkswarow | 02926 | 10534 |
⇿ | hoarr | 021FF | 8703 |
∻ | homtht | 0223B | 8763 |
↩ | hookleftarrow | 021A9 | 8617 |
↪ | hookrightarrow | 021AA | 8618 |
ℍ | Hopf | 0210D | 8461 |
𝕙 | hopf | 1D559 | 120153 |
― | horbar | 02015 | 8213 |
─ | HorizontalLine | 02500 | 9472 |
ℋ | Hscr | 0210B | 8459 |
𝒽 | hscr | 1D4BD | 119997 |
ℏ | hslash | 0210F | 8463 |
Ħ | Hstrok | 00126 | 294 |
ħ | hstrok | 00127 | 295 |
≎ | HumpDownHump | 0224E | 8782 |
≏ | HumpEqual | 0224F | 8783 |
⁃ | hybull | 02043 | 8259 |
‐ | hyphen | 02010 | 8208 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
Í | Iacute | 000CD | 205 |
í | iacute | 000ED | 237 |
| ic | 02063 | 8291 |
Î | Icirc | 000CE | 206 |
î | icirc | 000EE | 238 |
И | Icy | 00418 | 1048 |
и | icy | 00438 | 1080 |
İ | Idot | 00130 | 304 |
Е | IEcy | 00415 | 1045 |
е | iecy | 00435 | 1077 |
¡ | iexcl | 000A1 | 161 |
⇔ | iff | 021D4 | 8660 |
ℑ | Ifr | 02111 | 8465 |
𝔦 | ifr | 1D526 | 120102 |
Ì | Igrave | 000CC | 204 |
ì | igrave | 000EC | 236 |
ⅈ | ii | 02148 | 8520 |
⨌ | iiiint | 02A0C | 10764 |
∭ | iiint | 0222D | 8749 |
⧜ | iinfin | 029DC | 10716 |
℩ | iiota | 02129 | 8489 |
IJ | IJlig | 00132 | 306 |
ij | ijlig | 00133 | 307 |
ℑ | Im | 02111 | 8465 |
Ī | Imacr | 0012A | 298 |
ī | imacr | 0012B | 299 |
ℑ | image | 02111 | 8465 |
ⅈ | ImaginaryI | 02148 | 8520 |
ℐ | imagline | 02110 | 8464 |
ℑ | imagpart | 02111 | 8465 |
ı | imath | 00131 | 305 |
⊷ | imof | 022B7 | 8887 |
Ƶ | imped | 001B5 | 437 |
⇒ | Implies | 021D2 | 8658 |
∈ | in | 02208 | 8712 |
℅ | incare | 02105 | 8453 |
∞ | infin | 0221E | 8734 |
⧝ | infintie | 029DD | 10717 |
ı | inodot | 00131 | 305 |
∬ | Int | 0222C | 8748 |
∫ | int | 0222B | 8747 |
⊺ | intcal | 022BA | 8890 |
ℤ | integers | 02124 | 8484 |
∫ | Integral | 0222B | 8747 |
⊺ | intercal | 022BA | 8890 |
⋂ | Intersection | 022C2 | 8898 |
⨗ | intlarhk | 02A17 | 10775 |
⨼ | intprod | 02A3C | 10812 |
| InvisibleComma | 02063 | 8291 |
| InvisibleTimes | 02062 | 8290 |
Ё | IOcy | 00401 | 1025 |
ё | iocy | 00451 | 1105 |
Į | Iogon | 0012E | 302 |
į | iogon | 0012F | 303 |
𝕀 | Iopf | 1D540 | 120128 |
𝕚 | iopf | 1D55A | 120154 |
Ι | Iota | 00399 | 921 |
ι | iota | 003B9 | 953 |
⨼ | iprod | 02A3C | 10812 |
¿ | iquest | 000BF | 191 |
ℐ | Iscr | 02110 | 8464 |
𝒾 | iscr | 1D4BE | 119998 |
∈ | isin | 02208 | 8712 |
⋵ | isindot | 022F5 | 8949 |
⋹ | isinE | 022F9 | 8953 |
⋴ | isins | 022F4 | 8948 |
⋳ | isinsv | 022F3 | 8947 |
∈ | isinv | 02208 | 8712 |
| it | 02062 | 8290 |
Ĩ | Itilde | 00128 | 296 |
ĩ | itilde | 00129 | 297 |
І | Iukcy | 00406 | 1030 |
і | iukcy | 00456 | 1110 |
Ï | Iuml | 000CF | 207 |
ï | iuml | 000EF | 239 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
Ĵ | Jcirc | 00134 | 308 |
ĵ | jcirc | 00135 | 309 |
Й | Jcy | 00419 | 1049 |
й | jcy | 00439 | 1081 |
𝔍 | Jfr | 1D50D | 120077 |
𝔧 | jfr | 1D527 | 120103 |
ȷ | jmath | 00237 | 567 |
𝕁 | Jopf | 1D541 | 120129 |
𝕛 | jopf | 1D55B | 120155 |
𝒥 | Jscr | 1D4A5 | 119973 |
𝒿 | jscr | 1D4BF | 119999 |
Ј | Jsercy | 00408 | 1032 |
ј | jsercy | 00458 | 1112 |
Є | Jukcy | 00404 | 1028 |
є | jukcy | 00454 | 1108 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
Κ | Kappa | 0039A | 922 |
κ | kappa | 003BA | 954 |
ϰ | kappav | 003F0 | 1008 |
Ķ | Kcedil | 00136 | 310 |
ķ | kcedil | 00137 | 311 |
К | Kcy | 0041A | 1050 |
к | kcy | 0043A | 1082 |
𝔎 | Kfr | 1D50E | 120078 |
𝔨 | kfr | 1D528 | 120104 |
ĸ | kgreen | 00138 | 312 |
Х | KHcy | 00425 | 1061 |
х | khcy | 00445 | 1093 |
Ќ | KJcy | 0040C | 1036 |
ќ | kjcy | 0045C | 1116 |
𝕂 | Kopf | 1D542 | 120130 |
𝕜 | kopf | 1D55C | 120156 |
𝒦 | Kscr | 1D4A6 | 119974 |
𝓀 | kscr | 1D4C0 | 120000 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
⇚ | lAarr | 021DA | 8666 |
Ĺ | Lacute | 00139 | 313 |
ĺ | lacute | 0013A | 314 |
⦴ | laemptyv | 029B4 | 10676 |
ℒ | lagran | 02112 | 8466 |
Λ | Lambda | 0039B | 923 |
λ | lambda | 003BB | 955 |
⟪ | Lang | 027EA | 10218 |
⟨ | lang | 027E8 | 10216 |
⦑ | langd | 02991 | 10641 |
⟨ | langle | 027E8 | 10216 |
⪅ | lap | 02A85 | 10885 |
ℒ | Laplacetrf | 02112 | 8466 |
« | laquo | 000AB | 171 |
↞ | Larr | 0219E | 8606 |
⇐ | lArr | 021D0 | 8656 |
← | larr | 02190 | 8592 |
⇤ | larrb | 021E4 | 8676 |
⤟ | larrbfs | 0291F | 10527 |
⤝ | larrfs | 0291D | 10525 |
↩ | larrhk | 021A9 | 8617 |
↫ | larrlp | 021AB | 8619 |
⤹ | larrpl | 02939 | 10553 |
⥳ | larrsim | 02973 | 10611 |
↢ | larrtl | 021A2 | 8610 |
⪫ | lat | 02AAB | 10923 |
⤛ | lAtail | 0291B | 10523 |
⤙ | latail | 02919 | 10521 |
⪭ | late | 02AAD | 10925 |
⪭︀ | lates | 02AAD + 0FE00 | 10925 |
⤎ | lBarr | 0290E | 10510 |
⤌ | lbarr | 0290C | 10508 |
❲ | lbbrk | 02772 | 10098 |
{ | lbrace | 0007B | 123 |
[ | lbrack | 0005B | 91 |
⦋ | lbrke | 0298B | 10635 |
⦏ | lbrksld | 0298F | 10639 |
⦍ | lbrkslu | 0298D | 10637 |
Ľ | Lcaron | 0013D | 317 |
ľ | lcaron | 0013E | 318 |
Ļ | Lcedil | 0013B | 315 |
ļ | lcedil | 0013C | 316 |
⌈ | lceil | 02308 | 8968 |
{ | lcub | 0007B | 123 |
Л | Lcy | 0041B | 1051 |
л | lcy | 0043B | 1083 |
⤶ | ldca | 02936 | 10550 |
“ | ldquo | 0201C | 8220 |
„ | ldquor | 0201E | 8222 |
⥧ | ldrdhar | 02967 | 10599 |
⥋ | ldrushar | 0294B | 10571 |
↲ | ldsh | 021B2 | 8626 |
≦ | lE | 02266 | 8806 |
≤ | le | 02264 | 8804 |
⟨ | LeftAngleBracket | 027E8 | 10216 |
← | LeftArrow | 02190 | 8592 |
⇐ | Leftarrow | 021D0 | 8656 |
← | leftarrow | 02190 | 8592 |
⇤ | LeftArrowBar | 021E4 | 8676 |
⇆ | LeftArrowRightArrow | 021C6 | 8646 |
↢ | leftarrowtail | 021A2 | 8610 |
⌈ | LeftCeiling | 02308 | 8968 |
⟦ | LeftDoubleBracket | 027E6 | 10214 |
⥡ | LeftDownTeeVector | 02961 | 10593 |
⇃ | LeftDownVector | 021C3 | 8643 |
⥙ | LeftDownVectorBar | 02959 | 10585 |
⌊ | LeftFloor | 0230A | 8970 |
↽ | leftharpoondown | 021BD | 8637 |
↼ | leftharpoonup | 021BC | 8636 |
⇇ | leftleftarrows | 021C7 | 8647 |
↔ | LeftRightArrow | 02194 | 8596 |
⇔ | Leftrightarrow | 021D4 | 8660 |
↔ | leftrightarrow | 02194 | 8596 |
⇆ | leftrightarrows | 021C6 | 8646 |
⇋ | leftrightharpoons | 021CB | 8651 |
↭ | leftrightsquigarrow | 021AD | 8621 |
⥎ | LeftRightVector | 0294E | 10574 |
⊣ | LeftTee | 022A3 | 8867 |
↤ | LeftTeeArrow | 021A4 | 8612 |
⥚ | LeftTeeVector | 0295A | 10586 |
⋋ | leftthreetimes | 022CB | 8907 |
⊲ | LeftTriangle | 022B2 | 8882 |
⧏ | LeftTriangleBar | 029CF | 10703 |
⊴ | LeftTriangleEqual | 022B4 | 8884 |
⥑ | LeftUpDownVector | 02951 | 10577 |
⥠ | LeftUpTeeVector | 02960 | 10592 |
↿ | LeftUpVector | 021BF | 8639 |
⥘ | LeftUpVectorBar | 02958 | 10584 |
↼ | LeftVector | 021BC | 8636 |
⥒ | LeftVectorBar | 02952 | 10578 |
⪋ | lEg | 02A8B | 10891 |
⋚ | leg | 022DA | 8922 |
≤ | leq | 02264 | 8804 |
≦ | leqq | 02266 | 8806 |
⩽ | leqslant | 02A7D | 10877 |
⩽ | les | 02A7D | 10877 |
⪨ | lescc | 02AA8 | 10920 |
⩿ | lesdot | 02A7F | 10879 |
⪁ | lesdoto | 02A81 | 10881 |
⪃ | lesdotor | 02A83 | 10883 |
⋚︀ | lesg | 022DA + 0FE00 | 8922 |
⪓ | lesges | 02A93 | 10899 |
⪅ | lessapprox | 02A85 | 10885 |
⋖ | lessdot | 022D6 | 8918 |
⋚ | lesseqgtr | 022DA | 8922 |
⪋ | lesseqqgtr | 02A8B | 10891 |
⋚ | LessEqualGreater | 022DA | 8922 |
≦ | LessFullEqual | 02266 | 8806 |
≶ | LessGreater | 02276 | 8822 |
≶ | lessgtr | 02276 | 8822 |
⪡ | LessLess | 02AA1 | 10913 |
≲ | lesssim | 02272 | 8818 |
⩽ | LessSlantEqual | 02A7D | 10877 |
≲ | LessTilde | 02272 | 8818 |
⥼ | lfisht | 0297C | 10620 |
⌊ | lfloor | 0230A | 8970 |
𝔏 | Lfr | 1D50F | 120079 |
𝔩 | lfr | 1D529 | 120105 |
≶ | lg | 02276 | 8822 |
⪑ | lgE | 02A91 | 10897 |
⥢ | lHar | 02962 | 10594 |
↽ | lhard | 021BD | 8637 |
↼ | lharu | 021BC | 8636 |
⥪ | lharul | 0296A | 10602 |
▄ | lhblk | 02584 | 9604 |
Љ | LJcy | 00409 | 1033 |
љ | ljcy | 00459 | 1113 |
⋘ | Ll | 022D8 | 8920 |
≪ | ll | 0226A | 8810 |
⇇ | llarr | 021C7 | 8647 |
⌞ | llcorner | 0231E | 8990 |
⇚ | Lleftarrow | 021DA | 8666 |
⥫ | llhard | 0296B | 10603 |
◺ | lltri | 025FA | 9722 |
Ŀ | Lmidot | 0013F | 319 |
ŀ | lmidot | 00140 | 320 |
⎰ | lmoust | 023B0 | 9136 |
⎰ | lmoustache | 023B0 | 9136 |
⪉ | lnap | 02A89 | 10889 |
⪉ | lnapprox | 02A89 | 10889 |
≨ | lnE | 02268 | 8808 |
⪇ | lne | 02A87 | 10887 |
⪇ | lneq | 02A87 | 10887 |
≨ | lneqq | 02268 | 8808 |
⋦ | lnsim | 022E6 | 8934 |
⟬ | loang | 027EC | 10220 |
⇽ | loarr | 021FD | 8701 |
⟦ | lobrk | 027E6 | 10214 |
⟵ | LongLeftArrow | 027F5 | 10229 |
⟸ | Longleftarrow | 027F8 | 10232 |
⟵ | longleftarrow | 027F5 | 10229 |
⟷ | LongLeftRightArrow | 027F7 | 10231 |
⟺ | Longleftrightarrow | 027FA | 10234 |
⟷ | longleftrightarrow | 027F7 | 10231 |
⟼ | longmapsto | 027FC | 10236 |
⟶ | LongRightArrow | 027F6 | 10230 |
⟹ | Longrightarrow | 027F9 | 10233 |
⟶ | longrightarrow | 027F6 | 10230 |
↫ | looparrowleft | 021AB | 8619 |
↬ | looparrowright | 021AC | 8620 |
⦅ | lopar | 02985 | 10629 |
𝕃 | Lopf | 1D543 | 120131 |
𝕝 | lopf | 1D55D | 120157 |
⨭ | loplus | 02A2D | 10797 |
⨴ | lotimes | 02A34 | 10804 |
∗ | lowast | 02217 | 8727 |
_ | lowbar | 0005F | 95 |
↙ | LowerLeftArrow | 02199 | 8601 |
↘ | LowerRightArrow | 02198 | 8600 |
◊ | loz | 025CA | 9674 |
◊ | lozenge | 025CA | 9674 |
⧫ | lozf | 029EB | 10731 |
( | lpar | 00028 | 40 |
⦓ | lparlt | 02993 | 10643 |
⇆ | lrarr | 021C6 | 8646 |
⌟ | lrcorner | 0231F | 8991 |
⇋ | lrhar | 021CB | 8651 |
⥭ | lrhard | 0296D | 10605 |
| lrm | 0200E | 8206 |
⊿ | lrtri | 022BF | 8895 |
‹ | lsaquo | 02039 | 8249 |
ℒ | Lscr | 02112 | 8466 |
𝓁 | lscr | 1D4C1 | 120001 |
↰ | Lsh | 021B0 | 8624 |
↰ | lsh | 021B0 | 8624 |
≲ | lsim | 02272 | 8818 |
⪍ | lsime | 02A8D | 10893 |
⪏ | lsimg | 02A8F | 10895 |
[ | lsqb | 0005B | 91 |
‘ | lsquo | 02018 | 8216 |
‚ | lsquor | 0201A | 8218 |
Ł | Lstrok | 00141 | 321 |
ł | lstrok | 00142 | 322 |
≪ | Lt | 0226A | 8810 |
< | lt | 0003C | 60 |
⪦ | ltcc | 02AA6 | 10918 |
⩹ | ltcir | 02A79 | 10873 |
⋖ | ltdot | 022D6 | 8918 |
⋋ | lthree | 022CB | 8907 |
⋉ | ltimes | 022C9 | 8905 |
⥶ | ltlarr | 02976 | 10614 |
⩻ | ltquest | 02A7B | 10875 |
◃ | ltri | 025C3 | 9667 |
⊴ | ltrie | 022B4 | 8884 |
◂ | ltrif | 025C2 | 9666 |
⦖ | ltrPar | 02996 | 10646 |
⥊ | lurdshar | 0294A | 10570 |
⥦ | luruhar | 02966 | 10598 |
≨︀ | lvertneqq | 02268 + 0FE00 | 8808 |
≨︀ | lvnE | 02268 + 0FE00 | 8808 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
¯ | macr | 000AF | 175 |
♂ | male | 02642 | 9794 |
✠ | malt | 02720 | 10016 |
✠ | maltese | 02720 | 10016 |
⤅ | Map | 02905 | 10501 |
↦ | map | 021A6 | 8614 |
↦ | mapsto | 021A6 | 8614 |
↧ | mapstodown | 021A7 | 8615 |
↤ | mapstoleft | 021A4 | 8612 |
↥ | mapstoup | 021A5 | 8613 |
▮ | marker | 025AE | 9646 |
⨩ | mcomma | 02A29 | 10793 |
М | Mcy | 0041C | 1052 |
м | mcy | 0043C | 1084 |
— | mdash | 02014 | 8212 |
∺ | mDDot | 0223A | 8762 |
∡ | measuredangle | 02221 | 8737 |
MediumSpace | 0205F | 8287 | |
ℳ | Mellintrf | 02133 | 8499 |
𝔐 | Mfr | 1D510 | 120080 |
𝔪 | mfr | 1D52A | 120106 |
℧ | mho | 02127 | 8487 |
µ | micro | 000B5 | 181 |
∣ | mid | 02223 | 8739 |
* | midast | 0002A | 42 |
⫰ | midcir | 02AF0 | 10992 |
· | middot | 000B7 | 183 |
− | minus | 02212 | 8722 |
⊟ | minusb | 0229F | 8863 |
∸ | minusd | 02238 | 8760 |
⨪ | minusdu | 02A2A | 10794 |
∓ | MinusPlus | 02213 | 8723 |
⫛ | mlcp | 02ADB | 10971 |
… | mldr | 02026 | 8230 |
∓ | mnplus | 02213 | 8723 |
⊧ | models | 022A7 | 8871 |
𝕄 | Mopf | 1D544 | 120132 |
𝕞 | mopf | 1D55E | 120158 |
∓ | mp | 02213 | 8723 |
ℳ | Mscr | 02133 | 8499 |
𝓂 | mscr | 1D4C2 | 120002 |
∾ | mstpos | 0223E | 8766 |
Μ | Mu | 0039C | 924 |
μ | mu | 003BC | 956 |
⊸ | multimap | 022B8 | 8888 |
⊸ | mumap | 022B8 | 8888 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
∇ | nabla | 02207 | 8711 |
Ń | Nacute | 00143 | 323 |
ń | nacute | 00144 | 324 |
∠⃒ | nang | 02220 + 020D2 | |
≉ | nap | 02249 | 8777 |
⩰̸ | napE | 02A70 + 00338 | |
≋̸ | napid | 0224B + 00338 | |
ʼn | napos | 00149 | 329 |
≉ | napprox | 02249 | 8777 |
♮ | natur | 0266E | 9838 |
♮ | natural | 0266E | 9838 |
ℕ | naturals | 02115 | 8469 |
nbsp | 000A0 | 160 | |
≎̸ | nbump | 0224E + 00338 | |
≏̸ | nbumpe | 0224F + 00338 | |
⩃ | ncap | 02A43 | 10819 |
Ň | Ncaron | 00147 | 327 |
ň | ncaron | 00148 | 328 |
Ņ | Ncedil | 00145 | 325 |
ņ | ncedil | 00146 | 326 |
≇ | ncong | 02247 | 8775 |
⩭̸ | ncongdot | 02A6D + 00338 | |
⩂ | ncup | 02A42 | 10818 |
Н | Ncy | 0041D | 1053 |
н | ncy | 0043D | 1085 |
– | ndash | 02013 | 8211 |
≠ | ne | 02260 | 8800 |
⤤ | nearhk | 02924 | 10532 |
⇗ | neArr | 021D7 | 8663 |
↗ | nearr | 02197 | 8599 |
↗ | nearrow | 02197 | 8599 |
≐̸ | nedot | 02250 + 00338 | |
≢ | nequiv | 02262 | 8802 |
⤨ | nesear | 02928 | 10536 |
≂̸ | nesim | 02242 + 00338 | |
≫ | NestedGreaterGreater | 0226B | 8811 |
≪ | NestedLessLess | 0226A | 8810 |
NewLine | 0000A | 10 | |
∄ | nexist | 02204 | 8708 |
∄ | nexists | 02204 | 8708 |
𝔑 | Nfr | 1D511 | 120081 |
𝔫 | nfr | 1D52B | 120107 |
≧̸ | ngE | 02267 + 00338 | |
≱ | nge | 02271 | 8817 |
≱ | ngeq | 02271 | 8817 |
≧̸ | ngeqq | 02267 + 00338 | |
⩾̸ | ngeqslant | 02A7E + 00338 | |
⩾̸ | nges | 02A7E + 00338 | |
⋙̸ | nGg | 022D9 + 00338 | |
≵ | ngsim | 02275 | 8821 |
≫⃒ | nGt | 0226B + 020D2 | |
≯ | ngt | 0226F | 8815 |
≯ | ngtr | 0226F | 8815 |
≫̸ | nGtv | 0226B + 00338 | |
⇎ | nhArr | 021CE | 8654 |
↮ | nharr | 021AE | 8622 |
⫲ | nhpar | 02AF2 | 10994 |
∋ | ni | 0220B | 8715 |
⋼ | nis | 022FC | 8956 |
⋺ | nisd | 022FA | 8954 |
∋ | niv | 0220B | 8715 |
Њ | NJcy | 0040A | 1034 |
њ | njcy | 0045A | 1114 |
⇍ | nlArr | 021CD | 8653 |
↚ | nlarr | 0219A | 8602 |
‥ | nldr | 02025 | 8229 |
≦̸ | nlE | 02266 + 00338 | |
≰ | nle | 02270 | 8816 |
⇍ | nLeftarrow | 021CD | 8653 |
↚ | nleftarrow | 0219A | 8602 |
⇎ | nLeftrightarrow | 021CE | 8654 |
↮ | nleftrightarrow | 021AE | 8622 |
≰ | nleq | 02270 | 8816 |
≦̸ | nleqq | 02266 + 00338 | |
⩽̸ | nleqslant | 02A7D + 00338 | |
⩽̸ | nles | 02A7D + 00338 | |
≮ | nless | 0226E | 8814 |
⋘̸ | nLl | 022D8 + 00338 | |
≴ | nlsim | 02274 | 8820 |
≪⃒ | nLt | 0226A + 020D2 | |
≮ | nlt | 0226E | 8814 |
⋪ | nltri | 022EA | 8938 |
⋬ | nltrie | 022EC | 8940 |
≪̸ | nLtv | 0226A + 00338 | |
∤ | nmid | 02224 | 8740 |
| NoBreak | 02060 | 8288 |
NonBreakingSpace | 000A0 | 160 | |
ℕ | Nopf | 02115 | 8469 |
𝕟 | nopf | 1D55F | 120159 |
⫬ | Not | 02AEC | 10988 |
¬ | not | 000AC | 172 |
≢ | NotCongruent | 02262 | 8802 |
≭ | NotCupCap | 0226D | 8813 |
∦ | NotDoubleVerticalBar | 02226 | 8742 |
∉ | NotElement | 02209 | 8713 |
≠ | NotEqual | 02260 | 8800 |
≂̸ | NotEqualTilde | 02242 + 00338 | |
∄ | NotExists | 02204 | 8708 |
≯ | NotGreater | 0226F | 8815 |
≱ | NotGreaterEqual | 02271 | 8817 |
≧̸ | NotGreaterFullEqual | 02267 + 00338 | |
≫̸ | NotGreaterGreater | 0226B + 00338 | |
≹ | NotGreaterLess | 02279 | 8825 |
⩾̸ | NotGreaterSlantEqual | 02A7E + 00338 | |
≵ | NotGreaterTilde | 02275 | 8821 |
≎̸ | NotHumpDownHump | 0224E + 00338 | |
≏̸ | NotHumpEqual | 0224F + 00338 | |
∉ | notin | 02209 | 8713 |
⋵̸ | notindot | 022F5 + 00338 | |
⋹̸ | notinE | 022F9 + 00338 | |
∉ | notinva | 02209 | 8713 |
⋷ | notinvb | 022F7 | 8951 |
⋶ | notinvc | 022F6 | 8950 |
⋪ | NotLeftTriangle | 022EA | 8938 |
⧏̸ | NotLeftTriangleBar | 029CF + 00338 | |
⋬ | NotLeftTriangleEqual | 022EC | 8940 |
≮ | NotLess | 0226E | 8814 |
≰ | NotLessEqual | 02270 | 8816 |
≸ | NotLessGreater | 02278 | 8824 |
≪̸ | NotLessLess | 0226A + 00338 | |
⩽̸ | NotLessSlantEqual | 02A7D + 00338 | |
≴ | NotLessTilde | 02274 | 8820 |
⪢̸ | NotNestedGreaterGreater | 02AA2 + 00338 | |
⪡̸ | NotNestedLessLess | 02AA1 + 00338 | |
∌ | notni | 0220C | 8716 |
∌ | notniva | 0220C | 8716 |
⋾ | notnivb | 022FE | 8958 |
⋽ | notnivc | 022FD | 8957 |
⊀ | NotPrecedes | 02280 | 8832 |
⪯̸ | NotPrecedesEqual | 02AAF + 00338 | |
⋠ | NotPrecedesSlantEqual | 022E0 | 8928 |
∌ | NotReverseElement | 0220C | 8716 |
⋫ | NotRightTriangle | 022EB | 8939 |
⧐̸ | NotRightTriangleBar | 029D0 + 00338 | |
⋭ | NotRightTriangleEqual | 022ED | 8941 |
⊏̸ | NotSquareSubset | 0228F + 00338 | |
⋢ | NotSquareSubsetEqual | 022E2 | 8930 |
⊐̸ | NotSquareSuperset | 02290 + 00338 | |
⋣ | NotSquareSupersetEqual | 022E3 | 8931 |
⊂⃒ | NotSubset | 02282 + 020D2 | |
⊈ | NotSubsetEqual | 02288 | 8840 |
⊁ | NotSucceeds | 02281 | 8833 |
⪰̸ | NotSucceedsEqual | 02AB0 + 00338 | |
⋡ | NotSucceedsSlantEqual | 022E1 | 8929 |
≿̸ | NotSucceedsTilde | 0227F + 00338 | |
⊃⃒ | NotSuperset | 02283 + 020D2 | |
⊉ | NotSupersetEqual | 02289 | 8841 |
≁ | NotTilde | 02241 | 8769 |
≄ | NotTildeEqual | 02244 | 8772 |
≇ | NotTildeFullEqual | 02247 | 8775 |
≉ | NotTildeTilde | 02249 | 8777 |
∤ | NotVerticalBar | 02224 | 8740 |
∦ | npar | 02226 | 8742 |
∦ | nparallel | 02226 | 8742 |
⫽⃥ | nparsl | 02AFD + 020E5 | |
∂̸ | npart | 02202 + 00338 | |
⨔ | npolint | 02A14 | 10772 |
⊀ | npr | 02280 | 8832 |
⋠ | nprcue | 022E0 | 8928 |
⪯̸ | npre | 02AAF + 00338 | |
⊀ | nprec | 02280 | 8832 |
⪯̸ | npreceq | 02AAF + 00338 | |
⇏ | nrArr | 021CF | 8655 |
↛ | nrarr | 0219B | 8603 |
⤳̸ | nrarrc | 02933 + 00338 | |
↝̸ | nrarrw | 0219D + 00338 | |
⇏ | nRightarrow | 021CF | 8655 |
↛ | nrightarrow | 0219B | 8603 |
⋫ | nrtri | 022EB | 8939 |
⋭ | nrtrie | 022ED | 8941 |
⊁ | nsc | 02281 | 8833 |
⋡ | nsccue | 022E1 | 8929 |
⪰̸ | nsce | 02AB0 + 00338 | |
𝒩 | Nscr | 1D4A9 | 119977 |
𝓃 | nscr | 1D4C3 | 120003 |
∤ | nshortmid | 02224 | 8740 |
∦ | nshortparallel | 02226 | 8742 |
≁ | nsim | 02241 | 8769 |
≄ | nsime | 02244 | 8772 |
≄ | nsimeq | 02244 | 8772 |
∤ | nsmid | 02224 | 8740 |
∦ | nspar | 02226 | 8742 |
⋢ | nsqsube | 022E2 | 8930 |
⋣ | nsqsupe | 022E3 | 8931 |
⊄ | nsub | 02284 | 8836 |
⫅̸ | nsubE | 02AC5 + 00338 | |
⊈ | nsube | 02288 | 8840 |
⊂⃒ | nsubset | 02282 + 020D2 | |
⊈ | nsubseteq | 02288 | 8840 |
⫅̸ | nsubseteqq | 02AC5 + 00338 | |
⊁ | nsucc | 02281 | 8833 |
⪰̸ | nsucceq | 02AB0 + 00338 | |
⊅ | nsup | 02285 | 8837 |
⫆̸ | nsupE | 02AC6 + 00338 | |
⊉ | nsupe | 02289 | 8841 |
⊃⃒ | nsupset | 02283 + 020D2 | |
⊉ | nsupseteq | 02289 | 8841 |
⫆̸ | nsupseteqq | 02AC6 + 00338 | |
≹ | ntgl | 02279 | 8825 |
Ñ | Ntilde | 000D1 | 209 |
ñ | ntilde | 000F1 | 241 |
≸ | ntlg | 02278 | 8824 |
⋪ | ntriangleleft | 022EA | 8938 |
⋬ | ntrianglelefteq | 022EC | 8940 |
⋫ | ntriangleright | 022EB | 8939 |
⋭ | ntrianglerighteq | 022ED | 8941 |
Ν | Nu | 0039D | 925 |
ν | nu | 003BD | 957 |
# | num | 00023 | 35 |
№ | numero | 02116 | 8470 |
numsp | 02007 | 8199 | |
≍⃒ | nvap | 0224D + 020D2 | |
⊯ | nVDash | 022AF | 8879 |
⊮ | nVdash | 022AE | 8878 |
⊭ | nvDash | 022AD | 8877 |
⊬ | nvdash | 022AC | 8876 |
≥⃒ | nvge | 02265 + 020D2 | |
>⃒ | nvgt | 0003E + 020D2 | |
⤄ | nvHarr | 02904 | 10500 |
⧞ | nvinfin | 029DE | 10718 |
⤂ | nvlArr | 02902 | 10498 |
≤⃒ | nvle | 02264 + 020D2 | |
<⃒ | nvlt | 0003C + 020D2 | |
⊴⃒ | nvltrie | 022B4 + 020D2 | |
⤃ | nvrArr | 02903 | 10499 |
⊵⃒ | nvrtrie | 022B5 + 020D2 | |
∼⃒ | nvsim | 0223C + 020D2 | |
⤣ | nwarhk | 02923 | 10531 |
⇖ | nwArr | 021D6 | 8662 |
↖ | nwarr | 02196 | 8598 |
↖ | nwarrow | 02196 | 8598 |
⤧ | nwnear | 02927 | 10535 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
Ó | Oacute | 000D3 | 211 |
ó | oacute | 000F3 | 243 |
⊛ | oast | 0229B | 8859 |
⊚ | ocir | 0229A | 8858 |
Ô | Ocirc | 000D4 | 212 |
ô | ocirc | 000F4 | 244 |
О | Ocy | 0041E | 1054 |
о | ocy | 0043E | 1086 |
⊝ | odash | 0229D | 8861 |
Ő | Odblac | 00150 | 336 |
ő | odblac | 00151 | 337 |
⨸ | odiv | 02A38 | 10808 |
⊙ | odot | 02299 | 8857 |
⦼ | odsold | 029BC | 10684 |
Œ | OElig | 00152 | 338 |
œ | oelig | 00153 | 339 |
⦿ | ofcir | 029BF | 10687 |
𝔒 | Ofr | 1D512 | 120082 |
𝔬 | ofr | 1D52C | 120108 |
˛ | ogon | 002DB | 731 |
Ò | Ograve | 000D2 | 210 |
ò | ograve | 000F2 | 242 |
⧁ | ogt | 029C1 | 10689 |
⦵ | ohbar | 029B5 | 10677 |
Ω | ohm | 003A9 | 937 |
∮ | oint | 0222E | 8750 |
↺ | olarr | 021BA | 8634 |
⦾ | olcir | 029BE | 10686 |
⦻ | olcross | 029BB | 10683 |
‾ | oline | 0203E | 8254 |
⧀ | olt | 029C0 | 10688 |
Ō | Omacr | 0014C | 332 |
ō | omacr | 0014D | 333 |
Ω | Omega | 003A9 | 937 |
ω | omega | 003C9 | 969 |
Ο | Omicron | 0039F | 927 |
ο | omicron | 003BF | 959 |
⦶ | omid | 029B6 | 10678 |
⊖ | ominus | 02296 | 8854 |
𝕆 | Oopf | 1D546 | 120134 |
𝕠 | oopf | 1D560 | 120160 |
⦷ | opar | 029B7 | 10679 |
“ | OpenCurlyDoubleQuote | 0201C | 8220 |
‘ | OpenCurlyQuote | 02018 | 8216 |
⦹ | operp | 029B9 | 10681 |
⊕ | oplus | 02295 | 8853 |
⩔ | Or | 02A54 | 10836 |
∨ | or | 02228 | 8744 |
↻ | orarr | 021BB | 8635 |
⩝ | ord | 02A5D | 10845 |
ℴ | order | 02134 | 8500 |
ℴ | orderof | 02134 | 8500 |
ª | ordf | 000AA | 170 |
º | ordm | 000BA | 186 |
⊶ | origof | 022B6 | 8886 |
⩖ | oror | 02A56 | 10838 |
⩗ | orslope | 02A57 | 10839 |
⩛ | orv | 02A5B | 10843 |
Ⓢ | oS | 024C8 | 9416 |
𝒪 | Oscr | 1D4AA | 119978 |
ℴ | oscr | 02134 | 8500 |
Ø | Oslash | 000D8 | 216 |
ø | oslash | 000F8 | 248 |
⊘ | osol | 02298 | 8856 |
Õ | Otilde | 000D5 | 213 |
õ | otilde | 000F5 | 245 |
⨷ | Otimes | 02A37 | 10807 |
⊗ | otimes | 02297 | 8855 |
⨶ | otimesas | 02A36 | 10806 |
Ö | Ouml | 000D6 | 214 |
ö | ouml | 000F6 | 246 |
⌽ | ovbar | 0233D | 9021 |
‾ | OverBar | 0203E | 8254 |
⏞ | OverBrace | 023DE | 9182 |
⎴ | OverBracket | 023B4 | 9140 |
⏜ | OverParenthesis | 023DC | 9180 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
∥ | par | 02225 | 8741 |
¶ | para | 000B6 | 182 |
∥ | parallel | 02225 | 8741 |
⫳ | parsim | 02AF3 | 10995 |
⫽ | parsl | 02AFD | 11005 |
∂ | part | 02202 | 8706 |
∂ | PartialD | 02202 | 8706 |
П | Pcy | 0041F | 1055 |
п | pcy | 0043F | 1087 |
% | percnt | 00025 | 37 |
. | period | 0002E | 46 |
‰ | permil | 02030 | 8240 |
⊥ | perp | 022A5 | 8869 |
‱ | pertenk | 02031 | 8241 |
𝔓 | Pfr | 1D513 | 120083 |
𝔭 | pfr | 1D52D | 120109 |
Φ | Phi | 003A6 | 934 |
φ | phi | 003C6 | 966 |
ϕ | phiv | 003D5 | 981 |
ℳ | phmmat | 02133 | 8499 |
☎ | phone | 0260E | 9742 |
Π | Pi | 003A0 | 928 |
π | pi | 003C0 | 960 |
⋔ | pitchfork | 022D4 | 8916 |
ϖ | piv | 003D6 | 982 |
ℏ | planck | 0210F | 8463 |
ℎ | planckh | 0210E | 8462 |
ℏ | plankv | 0210F | 8463 |
+ | plus | 0002B | 43 |
⨣ | plusacir | 02A23 | 10787 |
⊞ | plusb | 0229E | 8862 |
⨢ | pluscir | 02A22 | 10786 |
∔ | plusdo | 02214 | 8724 |
⨥ | plusdu | 02A25 | 10789 |
⩲ | pluse | 02A72 | 10866 |
± | plusmn | 000B1 | 177 |
⨦ | plussim | 02A26 | 10790 |
⨧ | plustwo | 02A27 | 10791 |
± | pm | 000B1 | 177 |
ℌ | Poincareplane | 0210C | 8460 |
⨕ | pointint | 02A15 | 10773 |
ℙ | Popf | 02119 | 8473 |
𝕡 | popf | 1D561 | 120161 |
£ | pound | 000A3 | 163 |
⪻ | Pr | 02ABB | 10939 |
≺ | pr | 0227A | 8826 |
⪷ | prap | 02AB7 | 10935 |
≼ | prcue | 0227C | 8828 |
⪳ | prE | 02AB3 | 10931 |
⪯ | pre | 02AAF | 10927 |
≺ | prec | 0227A | 8826 |
⪷ | precapprox | 02AB7 | 10935 |
≼ | preccurlyeq | 0227C | 8828 |
≺ | Precedes | 0227A | 8826 |
⪯ | PrecedesEqual | 02AAF | 10927 |
≼ | PrecedesSlantEqual | 0227C | 8828 |
≾ | PrecedesTilde | 0227E | 8830 |
⪯ | preceq | 02AAF | 10927 |
⪹ | precnapprox | 02AB9 | 10937 |
⪵ | precneqq | 02AB5 | 10933 |
⋨ | precnsim | 022E8 | 8936 |
≾ | precsim | 0227E | 8830 |
″ | Prime | 02033 | 8243 |
′ | prime | 02032 | 8242 |
ℙ | primes | 02119 | 8473 |
⪹ | prnap | 02AB9 | 10937 |
⪵ | prnE | 02AB5 | 10933 |
⋨ | prnsim | 022E8 | 8936 |
∏ | prod | 0220F | 8719 |
∏ | Product | 0220F | 8719 |
⌮ | profalar | 0232E | 9006 |
⌒ | profline | 02312 | 8978 |
⌓ | profsurf | 02313 | 8979 |
∝ | prop | 0221D | 8733 |
∷ | Proportion | 02237 | 8759 |
∝ | Proportional | 0221D | 8733 |
∝ | propto | 0221D | 8733 |
≾ | prsim | 0227E | 8830 |
⊰ | prurel | 022B0 | 8880 |
𝒫 | Pscr | 1D4AB | 119979 |
𝓅 | pscr | 1D4C5 | 120005 |
Ψ | Psi | 003A8 | 936 |
ψ | psi | 003C8 | 968 |
puncsp | 02008 | 8200 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
𝔔 | Qfr | 1D514 | 120084 |
𝔮 | qfr | 1D52E | 120110 |
⨌ | qint | 02A0C | 10764 |
ℚ | Qopf | 0211A | 8474 |
𝕢 | qopf | 1D562 | 120162 |
⁗ | qprime | 02057 | 8279 |
𝒬 | Qscr | 1D4AC | 119980 |
𝓆 | qscr | 1D4C6 | 120006 |
ℍ | quaternions | 0210D | 8461 |
⨖ | quatint | 02A16 | 10774 |
? | quest | 0003F | 63 |
≟ | questeq | 0225F | 8799 |
" | quot | 00022 | 34 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
⇛ | rAarr | 021DB | 8667 |
∽̱ | race | 0223D + 00331 | |
Ŕ | Racute | 00154 | 340 |
ŕ | racute | 00155 | 341 |
√ | radic | 0221A | 8730 |
⦳ | raemptyv | 029B3 | 10675 |
⟫ | Rang | 027EB | 10219 |
⟩ | rang | 027E9 | 10217 |
⦒ | rangd | 02992 | 10642 |
⦥ | range | 029A5 | 10661 |
⟩ | rangle | 027E9 | 10217 |
» | raquo | 000BB | 187 |
↠ | Rarr | 021A0 | 8608 |
⇒ | rArr | 021D2 | 8658 |
→ | rarr | 02192 | 8594 |
⥵ | rarrap | 02975 | 10613 |
⇥ | rarrb | 021E5 | 8677 |
⤠ | rarrbfs | 02920 | 10528 |
⤳ | rarrc | 02933 | 10547 |
⤞ | rarrfs | 0291E | 10526 |
↪ | rarrhk | 021AA | 8618 |
↬ | rarrlp | 021AC | 8620 |
⥅ | rarrpl | 02945 | 10565 |
⥴ | rarrsim | 02974 | 10612 |
⤖ | Rarrtl | 02916 | 10518 |
↣ | rarrtl | 021A3 | 8611 |
↝ | rarrw | 0219D | 8605 |
⤜ | rAtail | 0291C | 10524 |
⤚ | ratail | 0291A | 10522 |
∶ | ratio | 02236 | 8758 |
ℚ | rationals | 0211A | 8474 |
⤐ | RBarr | 02910 | 10512 |
⤏ | rBarr | 0290F | 10511 |
⤍ | rbarr | 0290D | 10509 |
❳ | rbbrk | 02773 | 10099 |
} | rbrace | 0007D | 125 |
] | rbrack | 0005D | 93 |
⦌ | rbrke | 0298C | 10636 |
⦎ | rbrksld | 0298E | 10638 |
⦐ | rbrkslu | 02990 | 10640 |
Ř | Rcaron | 00158 | 344 |
ř | rcaron | 00159 | 345 |
Ŗ | Rcedil | 00156 | 342 |
ŗ | rcedil | 00157 | 343 |
⌉ | rceil | 02309 | 8969 |
} | rcub | 0007D | 125 |
Р | Rcy | 00420 | 1056 |
р | rcy | 00440 | 1088 |
⤷ | rdca | 02937 | 10551 |
⥩ | rdldhar | 02969 | 10601 |
” | rdquo | 0201D | 8221 |
” | rdquor | 0201D | 8221 |
↳ | rdsh | 021B3 | 8627 |
ℜ | Re | 0211C | 8476 |
ℜ | real | 0211C | 8476 |
ℛ | realine | 0211B | 8475 |
ℜ | realpart | 0211C | 8476 |
ℝ | reals | 0211D | 8477 |
▭ | rect | 025AD | 9645 |
® | reg | 000AE | 174 |
∋ | ReverseElement | 0220B | 8715 |
⇋ | ReverseEquilibrium | 021CB | 8651 |
⥯ | ReverseUpEquilibrium | 0296F | 10607 |
⥽ | rfisht | 0297D | 10621 |
⌋ | rfloor | 0230B | 8971 |
ℜ | Rfr | 0211C | 8476 |
𝔯 | rfr | 1D52F | 120111 |
⥤ | rHar | 02964 | 10596 |
⇁ | rhard | 021C1 | 8641 |
⇀ | rharu | 021C0 | 8640 |
⥬ | rharul | 0296C | 10604 |
Ρ | Rho | 003A1 | 929 |
ρ | rho | 003C1 | 961 |
ϱ | rhov | 003F1 | 1009 |
⟩ | RightAngleBracket | 027E9 | 10217 |
→ | RightArrow | 02192 | 8594 |
⇒ | Rightarrow | 021D2 | 8658 |
→ | rightarrow | 02192 | 8594 |
⇥ | RightArrowBar | 021E5 | 8677 |
⇄ | RightArrowLeftArrow | 021C4 | 8644 |
↣ | rightarrowtail | 021A3 | 8611 |
⌉ | RightCeiling | 02309 | 8969 |
⟧ | RightDoubleBracket | 027E7 | 10215 |
⥝ | RightDownTeeVector | 0295D | 10589 |
⇂ | RightDownVector | 021C2 | 8642 |
⥕ | RightDownVectorBar | 02955 | 10581 |
⌋ | RightFloor | 0230B | 8971 |
⇁ | rightharpoondown | 021C1 | 8641 |
⇀ | rightharpoonup | 021C0 | 8640 |
⇄ | rightleftarrows | 021C4 | 8644 |
⇌ | rightleftharpoons | 021CC | 8652 |
⇉ | rightrightarrows | 021C9 | 8649 |
↝ | rightsquigarrow | 0219D | 8605 |
⊢ | RightTee; | 022A2 | 8866 |
↦ | RightTeeArrow | 021A6 | 8614 |
⥛ | RightTeeVector | 0295B | 10587 |
⋌ | rightthreetimes | 022CC | 8908 |
⊳ | RightTriangle | 022B3 | 8883 |
⧐ | RightTriangleBar | 029D0 | 10704 |
⊵ | RightTriangleEqual | 022B5 | 8885 |
⥏ | RightUpDownVector | 0294F | 10575 |
⥜ | RightUpTeeVector | 0295C | 10588 |
↾ | RightUpVector | 021BE | 8638 |
⥔ | RightUpVectorBar | 02954 | 10580 |
⇀ | RightVector | 021C0 | 8640 |
⥓ | RightVectorBar | 02953 | 10579 |
˚ | ring | 002DA | 730 |
≓ | risingdotseq | 02253 | 8787 |
⇄ | rlarr | 021C4 | 8644 |
⇌ | rlhar | 021CC | 8652 |
| rlm | 0200F | 8207 |
⎱ | rmoust | 023B1 | 9137 |
⎱ | rmoustache | 023B1 | 9137 |
⫮ | rnmid | 02AEE | 10990 |
⟭ | roang | 027ED | 10221 |
⇾ | roarr | 021FE | 8702 |
⟧ | robrk | 027E7 | 10215 |
⦆ | ropar | 02986 | 10630 |
ℝ | Ropf | 0211D | 8477 |
𝕣 | ropf | 1D563 | 120163 |
⨮ | roplus | 02A2E | 10798 |
⨵ | rotimes | 02A35 | 10805 |
⥰ | RoundImplies | 02970 | 10608 |
) | rpar | 00029 | 41 |
⦔ | rpargt | 02994 | 10644 |
⨒ | rppolint | 02A12 | 10770 |
⇉ | rrarr | 021C9 | 8649 |
⇛ | Rrightarrow | 021DB | 8667 |
› | rsaquo | 0203A | 8250 |
ℛ | Rscr | 0211B | 8475 |
𝓇 | rscr | 1D4C7 | 120007 |
↱ | Rsh | 021B1 | 8625 |
↱ | rsh | 021B1 | 8625 |
] | rsqb | 0005D | 93 |
’ | rsquo | 02019 | 8217 |
’ | rsquor | 02019 | 8217 |
⋌ | rthree | 022CC | 8908 |
⋊ | rtimes | 022CA | 8906 |
▹ | rtri | 025B9 | 9657 |
⊵ | rtrie | 022B5 | 8885 |
▸ | rtrif | 025B8 | 9656 |
⧎ | rtriltri | 029CE | 10702 |
⧴ | RuleDelayed | 029F4 | 10740 |
⥨ | ruluhar | 02968 | 10600 |
℞ | rx | 0211E | 8478 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
Ś | Sacute | 0015A | 346 |
ś | sacute | 0015B | 347 |
‚ | sbquo | 0201A | 8218 |
⪼ | Sc | 02ABC | 10940 |
≻ | sc | 0227B | 8827 |
⪸ | scap | 02AB8 | 10936 |
Š | Scaron | 00160 | 352 |
š | scaron | 00161 | 353 |
≽ | sccue | 0227D | 8829 |
⪴ | scE | 02AB4 | 10932 |
⪰ | sce | 02AB0 | 10928 |
Ş | Scedil | 0015E | 350 |
ş | scedil | 0015F | 351 |
Ŝ | Scirc | 0015C | 348 |
ŝ | scirc | 0015D | 349 |
⪺ | scnap | 02ABA | 10938 |
⪶ | scnE | 02AB6 | 10934 |
⋩ | scnsim | 022E9 | 8937 |
⨓ | scpolint | 02A13 | 10771 |
≿ | scsim | 0227F | 8831 |
С | Scy | 00421 | 1057 |
с | scy | 00441 | 1089 |
⋅ | sdot | 022C5 | 8901 |
⊡ | sdotb | 022A1 | 8865 |
⩦ | sdote | 02A66 | 10854 |
⤥ | searhk | 02925 | 10533 |
⇘ | seArr | 021D8 | 8664 |
↘ | searr | 02198 | 8600 |
↘ | searrow | 02198 | 8600 |
§ | sect | 000A7 | 167 |
; | semi | 0003B | 59 |
⤩ | seswar | 02929 | 10537 |
∖ | setminus | 02216 | 8726 |
∖ | setmn | 02216 | 8726 |
✶ | sext | 02736 | 10038 |
𝔖 | Sfr | 1D516 | 120086 |
𝔰 | sfr | 1D530 | 120112 |
⌢ | sfrown | 02322 | 8994 |
♯ | sharp | 0266F | 9839 |
Щ | SHCHcy | 00429 | 1065 |
щ | shchcy | 00449 | 1097 |
Ш | SHcy | 00428 | 1064 |
ш | shcy | 00448 | 1096 |
↓ | ShortDownArrow | 02193 | 8595 |
← | ShortLeftArrow | 02190 | 8592 |
∣ | shortmid | 02223 | 8739 |
∥ | shortparallel | 02225 | 8741 |
→ | ShortRightArrow | 02192 | 8594 |
↑ | ShortUpArrow | 02191 | 8593 |
| shy | 000AD | 173 |
Σ | Sigma | 003A3 | 931 |
σ | sigma | 003C3 | 963 |
ς | sigmaf | 003C2 | 962 |
ς | sigmav | 003C2 | 962 |
∼ | sim | 0223C | 8764 |
⩪ | simdot | 02A6A | 10858 |
≃ | sime | 02243 | 8771 |
≃ | simeq | 02243 | 8771 |
⪞ | simg | 02A9E | 10910 |
⪠ | simgE | 02AA0 | 10912 |
⪝ | siml | 02A9D | 10909 |
⪟ | simlE | 02A9F | 10911 |
≆ | simne | 02246 | 8774 |
⨤ | simplus | 02A24 | 10788 |
⥲ | simrarr | 02972 | 10610 |
← | slarr | 02190 | 8592 |
∘ | SmallCircle | 02218 | 8728 |
∖ | smallsetminus | 02216 | 8726 |
⨳ | smashp | 02A33 | 10803 |
⧤ | smeparsl | 029E4 | 10724 |
∣ | smid | 02223 | 8739 |
⌣ | smile | 02323 | 8995 |
⪪ | smt | 02AAA | 10922 |
⪬ | smte | 02AAC | 10924 |
⪬︀ | smtes | 02AAC + 0FE00 | 10924 |
Ь | SOFTcy | 0042C | 1068 |
ь | softcy | 0044C | 1100 |
/ | sol | 0002F | 47 |
⧄ | solb | 029C4 | 10692 |
⌿ | solbar | 0233F | 9023 |
𝕊 | Sopf | 1D54A | 120138 |
𝕤 | sopf | 1D564 | 120164 |
♠ | spades | 02660 | 9824 |
♠ | spadesuit | 02660 | 9824 |
∥ | spar | 02225 | 8741 |
⊓ | sqcap | 02293 | 8851 |
⊓︀ | sqcaps | 02293 + 0FE00 | 8851 |
⊔ | sqcup | 02294 | 8852 |
⊔︀ | sqcups | 02294 + 0FE00 | 8852 |
√ | Sqrt | 0221A | 8730 |
⊏ | sqsub | 0228F | 8847 |
⊑ | sqsube | 02291 | 8849 |
⊏ | sqsubset | 0228F | 8847 |
⊑ | sqsubseteq | 02291 | 8849 |
⊐ | sqsup | 02290 | 8848 |
⊒ | sqsupe | 02292 | 8850 |
⊐ | sqsupset | 02290 | 8848 |
⊒ | sqsupseteq | 02292 | 8850 |
□ | squ | 025A1 | 9633 |
□ | Square | 025A1 | 9633 |
□ | square | 025A1 | 9633 |
⊓ | SquareIntersection | 02293 | 8851 |
⊏ | SquareSubset | 0228F | 8847 |
⊑ | SquareSubsetEqual | 02291 | 8849 |
⊐ | SquareSuperset | 02290 | 8848 |
⊒ | SquareSupersetEqual | 02292 | 8850 |
⊔ | SquareUnion | 02294 | 8852 |
▪ | squarf | 025AA | 9642 |
▪ | squf | 025AA | 9642 |
→ | srarr | 02192 | 8594 |
𝒮 | Sscr | 1D4AE | 119982 |
𝓈 | sscr | 1D4C8 | 120008 |
∖ | ssetmn | 02216 | 8726 |
⌣ | ssmile | 02323 | 8995 |
⋆ | sstarf | 022C6 | 8902 |
⋆ | Star | 022C6 | 8902 |
☆ | star | 02606 | 9734 |
★ | starf | 02605 | 9733 |
ϵ | straightepsilon | 003F5 | 1013 |
ϕ | straightphi | 003D5 | 981 |
¯ | strns | 000AF | 175 |
⋐ | Sub | 022D0 | 8912 |
⊂ | sub | 02282 | 8834 |
⪽ | subdot | 02ABD | 10941 |
⫅ | subE | 02AC5 | 10949 |
⊆ | sube | 02286 | 8838 |
⫃ | subedot | 02AC3 | 10947 |
⫁ | submult | 02AC1 | 10945 |
⫋ | subnE | 02ACB | 10955 |
⊊ | subne | 0228A | 8842 |
⪿ | subplus | 02ABF | 10943 |
⥹ | subrarr | 02979 | 10617 |
⋐ | Subset | 022D0 | 8912 |
⊂ | subset | 02282 | 8834 |
⊆ | subseteq | 02286 | 8838 |
⫅ | subseteqq | 02AC5 | 10949 |
⊆ | SubsetEqual | 02286 | 8838 |
⊊ | subsetneq | 0228A | 8842 |
⫋ | subsetneqq | 02ACB | 10955 |
⫇ | subsim | 02AC7 | 10951 |
⫕ | subsub | 02AD5 | 10965 |
⫓ | subsup | 02AD3 | 10963 |
≻ | succ | 0227B | 8827 |
⪸ | succapprox | 02AB8 | 10936 |
≽ | succcurlyeq | 0227D | 8829 |
≻ | Succeeds | 0227B | 8827 |
⪰ | SucceedsEqual | 02AB0 | 10928 |
≽ | SucceedsSlantEqual | 0227D | 8829 |
≿ | SucceedsTilde | 0227F | 8831 |
⪰ | succeq | 02AB0 | 10928 |
⪺ | succnapprox | 02ABA | 10938 |
⪶ | succneqq | 02AB6 | 10934 |
⋩ | succnsim | 022E9 | 8937 |
≿ | succsim | 0227F | 8831 |
∋ | SuchThat | 0220B | 8715 |
∑ | Sum | 02211 | 8721 |
∑ | sum | 02211 | 8721 |
♪ | sung | 0266A | 9834 |
⋑ | Sup | 022D1 | 8913 |
⊃ | sup | 02283 | 8835 |
¹ | sup1 | 000B9 | 185 |
² | sup2 | 000B2 | 178 |
³ | sup3 | 000B3 | 179 |
⪾ | supdot | 02ABE | 10942 |
⫘ | supdsub | 02AD8 | 10968 |
⫆ | supE | 02AC6 | 10950 |
⊇ | supe | 02287 | 8839 |
⫄ | supedot | 02AC4 | 10948 |
⊃ | Superset | 02283 | 8835 |
⊇ | SupersetEqual | 02287 | 8839 |
⟉ | suphsol | 027C9 | 10185 |
⫗ | suphsub | 02AD7 | 10967 |
⥻ | suplarr | 0297B | 10619 |
⫂ | supmult | 02AC2 | 10946 |
⫌ | supnE | 02ACC | 10956 |
⊋ | supne | 0228B | 8843 |
⫀ | supplus | 02AC0 | 10944 |
⋑ | Supset | 022D1 | 8913 |
⊃ | supset | 02283 | 8835 |
⊇ | supseteq | 02287 | 8839 |
⫆ | supseteqq | 02AC6 | 10950 |
⊋ | supsetneq | 0228B | 8843 |
⫌ | supsetneqq | 02ACC | 10956 |
⫈ | supsim | 02AC8 | 10952 |
⫔ | supsub | 02AD4 | 10964 |
⫖ | supsup | 02AD6 | 10966 |
⤦ | swarhk | 02926 | 10534 |
⇙ | swArr | 021D9 | 8665 |
↙ | swarr | 02199 | 8601 |
↙ | swarrow | 02199 | 8601 |
⤪ | swnwar | 0292A | 10538 |
ß | szlig | 000DF | 223 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
Tab | 00009 | 9 | |
⌖ | target | 02316 | 8982 |
Τ | Tau | 003A4 | 932 |
τ | tau | 003C4 | 964 |
⎴ | tbrk | 023B4 | 9140 |
Ť | Tcaron | 00164 | 356 |
ť | tcaron | 00165 | 357 |
Ţ | Tcedil | 00162 | 354 |
ţ | tcedil | 00163 | 355 |
Т | Tcy | 00422 | 1058 |
т | tcy | 00442 | 1090 |
⃛ | tdot | 020DB | 8411 |
⌕ | telrec | 02315 | 8981 |
𝔗 | Tfr | 1D517 | 120087 |
𝔱 | tfr | 1D531 | 120113 |
∴ | there4 | 02234 | 8756 |
∴ | Therefore | 02234 | 8756 |
∴ | therefore | 02234 | 8756 |
Θ | Theta | 00398 | 920 |
θ | theta | 003B8 | 952 |
ϑ | thetasym | 003D1 | 977 |
ϑ | thetav | 003D1 | 977 |
≈ | thickapprox | 02248 | 8776 |
∼ | thicksim | 0223C | 8764 |
ThickSpace | 0205F + 0200A | 8287 | |
thinsp | 02009 | 8201 | |
ThinSpace | 02009 | 8201 | |
≈ | thkap | 02248 | 8776 |
∼ | thksim | 0223C | 8764 |
Þ | THORN | 000DE | 222 |
þ | thorn | 000FE | 254 |
∼ | Tilde | 0223C | 8764 |
˜ | tilde | 002DC | 732 |
≃ | TildeEqual | 02243 | 8771 |
≅ | TildeFullEqual | 02245 | 8773 |
≈ | TildeTilde | 02248 | 8776 |
× | times | 000D7 | 215 |
⊠ | timesb | 022A0 | 8864 |
⨱ | timesbar | 02A31 | 10801 |
⨰ | timesd | 02A30 | 10800 |
∭ | tint | 0222D | 8749 |
⤨ | toea | 02928 | 10536 |
⊤ | top | 022A4 | 8868 |
⌶ | topbot | 02336 | 9014 |
⫱ | topcir | 02AF1 | 10993 |
𝕋 | Topf | 1D54B | 120139 |
𝕥 | topf | 1D565 | 120165 |
⫚ | topfork | 02ADA | 10970 |
⤩ | tosa | 02929 | 10537 |
‴ | tprime | 02034 | 8244 |
™ | TRADE | 02122 | 8482 |
™ | trade | 02122 | 8482 |
▵ | triangle | 025B5 | 9653 |
▿ | triangledown | 025BF | 9663 |
◃ | triangleleft | 025C3 | 9667 |
⊴ | trianglelefteq | 022B4 | 8884 |
≜ | triangleq | 0225C | 8796 |
▹ | triangleright | 025B9 | 9657 |
⊵ | trianglerighteq | 022B5 | 8885 |
◬ | tridot | 025EC | 9708 |
≜ | trie | 0225C | 8796 |
⨺ | triminus | 02A3A | 10810 |
⃛ | TripleDot | 020DB | 8411 |
⨹ | triplus | 02A39 | 10809 |
⧍ | trisb | 029CD | 10701 |
⨻ | tritime | 02A3B | 10811 |
⏢ | trpezium | 023E2 | 9186 |
𝒯 | Tscr | 1D4AF | 119983 |
𝓉 | tscr | 1D4C9 | 120009 |
Ц | TScy | 00426 | 1062 |
ц | tscy | 00446 | 1094 |
Ћ | TSHcy | 0040B | 1035 |
ћ | tshcy | 0045B | 1115 |
Ŧ | Tstrok | 00166 | 358 |
ŧ | tstrok | 00167 | 359 |
≬ | twixt | 0226C | 8812 |
↞ | twoheadleftarrow | 0219E | 8606 |
↠ | twoheadrightarrow | 021A0 | 8608 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
Ú | Uacute | 000DA | 218 |
ú | uacute | 000FA | 250 |
↟ | Uarr | 0219F | 8607 |
⇑ | uArr | 021D1 | 8657 |
↑ | uarr | 02191 | 8593 |
⥉ | Uarrocir | 02949 | 10569 |
Ў | Ubrcy | 0040E | 1038 |
ў | ubrcy | 0045E | 1118 |
Ŭ | Ubreve | 0016C | 364 |
ŭ | ubreve | 0016D | 365 |
Û | Ucirc | 000DB | 219 |
û | ucirc | 000FB | 251 |
У | Ucy | 00423 | 1059 |
у | ucy | 00443 | 1091 |
⇅ | udarr | 021C5 | 8645 |
Ű | Udblac | 00170 | 368 |
ű | udblac | 00171 | 369 |
⥮ | udhar | 0296E | 10606 |
⥾ | ufisht | 0297E | 10622 |
𝔘 | Ufr | 1D518 | 120088 |
𝔲 | ufr | 1D532 | 120114 |
Ù | Ugrave | 000D9 | 217 |
ù | ugrave | 000F9 | 249 |
⥣ | uHar | 02963 | 10595 |
↿ | uharl | 021BF | 8639 |
↾ | uharr | 021BE | 8638 |
▀ | uhblk | 02580 | 9600 |
⌜ | ulcorn | 0231C | 8988 |
⌜ | ulcorner | 0231C | 8988 |
⌏ | ulcrop | 0230F | 8975 |
◸ | ultri | 025F8 | 9720 |
Ū | Umacr | 0016A | 362 |
ū | umacr | 0016B | 363 |
¨ | uml | 000A8 | 168 |
_ | UnderBar | 0005F | 95 |
⏟ | UnderBrace | 023DF | 9183 |
⎵ | UnderBracket | 023B5 | 9141 |
⏝ | UnderParenthesis | 023DD | 9181 |
⋃ | Union | 022C3 | 8899 |
⊎ | UnionPlus | 0228E | 8846 |
Ų | Uogon | 00172 | 370 |
ų | uogon | 00173 | 371 |
𝕌 | Uopf | 1D54C | 120140 |
𝕦 | uopf | 1D566 | 120166 |
↑ | UpArrow | 02191 | 8593 |
⇑ | Uparrow | 021D1 | 8657 |
↑ | uparrow | 02191 | 8593 |
⤒ | UpArrowBar | 02912 | 10514 |
⇅ | UpArrowDownArrow | 021C5 | 8645 |
↕ | UpDownArrow | 02195 | 8597 |
⇕ | Updownarrow | 021D5 | 8661 |
↕ | updownarrow | 02195 | 8597 |
⥮ | UpEquilibrium | 0296E | 10606 |
↿ | upharpoonleft | 021BF | 8639 |
↾ | upharpoonright | 021BE | 8638 |
⊎ | uplus | 0228E | 8846 |
↖ | UpperLeftArrow | 02196 | 8598 |
↗ | UpperRightArrow | 02197 | 8599 |
ϒ | Upsi | 003D2 | 978 |
υ | upsi | 003C5 | 965 |
ϒ | upsih | 003D2 | 978 |
Υ | Upsilon | 003A5 | 933 |
υ | upsilon | 003C5 | 965 |
⊥ | UpTee | 022A5 | 8869 |
↥ | UpTeeArrow | 021A5 | 8613 |
⇈ | upuparrows | 021C8 | 8648 |
⌝ | urcorn | 0231D | 8989 |
⌝ | urcorner | 0231D | 8989 |
⌎ | urcrop | 0230E | 8974 |
Ů | Uring | 0016E | 366 |
ů | uring | 0016F | 367 |
◹ | urtri | 025F9 | 9721 |
𝒰 | Uscr | 1D4B0 | 119984 |
𝓊 | uscr | 1D4CA | 120010 |
⋰ | utdot | 022F0 | 8944 |
Ũ | Utilde | 00168 | 360 |
ũ | utilde | 00169 | 361 |
▵ | utri | 025B5 | 9653 |
▴ | utrif | 025B4 | 9652 |
⇈ | uuarr | 021C8 | 8648 |
Ü | Uuml | 000DC | 220 |
ü | uuml | 000FC | 252 |
⦧ | uwangle | 029A7 | 10663 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
⦜ | vangrt | 0299C | 10652 |
ϵ | varepsilon | 003F5 | 1013 |
ϰ | varkappa | 003F0 | 1008 |
∅ | varnothing | 02205 | 8709 |
ϕ | varphi | 003D5 | 981 |
ϖ | varpi | 003D6 | 982 |
∝ | varpropto | 0221D | 8733 |
⇕ | vArr | 021D5 | 8661 |
↕ | varr | 02195 | 8597 |
ϱ | varrho | 003F1 | 1009 |
ς | varsigma | 003C2 | 962 |
⊊︀ | varsubsetneq | 0228A + 0FE00 | 8842 |
⫋︀ | varsubsetneqq | 02ACB + 0FE00 | 10955 |
⊋︀ | varsupsetneq | 0228B + 0FE00 | 8843 |
⫌︀ | varsupsetneqq | 02ACC + 0FE00 | 10956 |
ϑ | vartheta | 003D1 | 977 |
⊲ | vartriangleleft | 022B2 | 8882 |
⊳ | vartriangleright | 022B3 | 8883 |
⫫ | Vbar | 02AEB | 10987 |
⫨ | vBar | 02AE8 | 10984 |
⫩ | vBarv | 02AE9 | 10985 |
В | Vcy | 00412 | 1042 |
в | vcy | 00432 | 1074 |
⊫ | VDash | 022AB | 8875 |
⊩ | Vdash | 022A9 | 8873 |
⊨ | vDash | 022A8 | 8872 |
⊢ | vdash | 022A2 | 8866 |
⫦ | Vdashl | 02AE6 | 10982 |
⋁ | Vee | 022C1 | 8897 |
∨ | vee | 02228 | 8744 |
⊻ | veebar | 022BB | 8891 |
≚ | veeeq | 0225A | 8794 |
⋮ | vellip | 022EE | 8942 |
‖ | Verbar | 02016 | 8214 |
| | verbar | 0007C | 124 |
‖ | Vert | 02016 | 8214 |
| | vert | 0007C | 124 |
∣ | VerticalBar | 02223 | 8739 |
| | VerticalLine | 0007C | 124 |
❘ | VerticalSeparator | 02758 | 10072 |
≀ | VerticalTilde | 02240 | 8768 |
VeryThinSpace | 0200A | 8202 | |
𝔙 | Vfr | 1D519 | 120089 |
𝔳 | vfr | 1D533 | 120115 |
⊲ | vltri | 022B2 | 8882 |
⊂⃒ | vnsub | 02282 + 020D2 | 8834 |
⊃⃒ | vnsup | 02283 + 020D2 | 8835 |
𝕍 | Vopf | 1D54D | 120141 |
𝕧 | vopf | 1D567 | 120167 |
∝ | vprop | 0221D | 8733 |
⊳ | vrtri | 022B3 | 8883 |
𝒱 | Vscr | 1D4B1 | 119985 |
𝓋 | vscr | 1D4CB | 120011 |
⫋︀ | vsubnE | 02ACB + 0FE00 | |
⊊︀ | vsubne | 0228A + 0FE00 | |
⫌︀ | vsupnE | 02ACC + 0FE00 | |
⊋︀ | vsupne | 0228B + 0FE00 | |
⊪ | Vvdash | 022AA | 8874 |
⦚ | vzigzag | 0299A | 10650 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
Ŵ | Wcirc | 00174 | 372 |
ŵ | wcirc | 00175 | 373 |
⩟ | wedbar | 02A5F | 10847 |
⋀ | Wedge | 022C0 | 8896 |
∧ | wedge | 02227 | 8743 |
≙ | wedgeq | 02259 | 8793 |
℘ | weierp | 02118 | 8472 |
𝔚 | Wfr | 1D51A | 120090 |
𝔴 | wfr | 1D534 | 120116 |
𝕎 | Wopf | 1D54E | 120142 |
𝕨 | wopf | 1D568 | 120168 |
℘ | wp | 02118 | 8472 |
≀ | wr | 02240 | 8768 |
≀ | wreath | 02240 | 8768 |
𝒲 | Wscr | 1D4B2 | 119986 |
𝓌 | wscr | 1D4CC | 120012 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
⋂ | xcap | 022C2 | 8898 |
◯ | xcirc | 025EF | 9711 |
⋃ | xcup | 022C3 | 8899 |
▽ | xdtri | 025BD | 9661 |
𝔛 | Xfr | 1D51B | 120091 |
𝔵 | xfr | 1D535 | 120117 |
⟺ | xhArr | 027FA | 10234 |
⟷ | xharr | 027F7 | 10231 |
Ξ | Xi | 0039E | 926 |
ξ | xi | 003BE | 958 |
⟸ | xlArr | 027F8 | 10232 |
⟵ | xlarr | 027F5 | 10229 |
⟼ | xmap | 027FC | 10236 |
⋻ | xnis | 022FB | 8955 |
⨀ | xodot | 02A00 | 10752 |
𝕏 | Xopf | 1D54F | 120143 |
𝕩 | xopf | 1D569 | 120169 |
⨁ | xoplus | 02A01 | 10753 |
⨂ | xotime | 02A02 | 10754 |
⟹ | xrArr | 027F9 | 10233 |
⟶ | xrarr | 027F6 | 10230 |
𝒳 | Xscr | 1D4B3 | 119987 |
𝓍 | xscr | 1D4CD | 120013 |
⨆ | xsqcup | 02A06 | 10758 |
⨄ | xuplus | 02A04 | 10756 |
△ | xutri | 025B3 | 9651 |
⋁ | xvee | 022C1 | 8897 |
⋀ | xwedge | 022C0 | 8896 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
Ý | Yacute | 000DD | 221 |
ý | yacute | 000FD | 253 |
Я | YAcy | 0042F | 1071 |
я | yacy | 0044F | 1103 |
Ŷ | Ycirc | 00176 | 374 |
ŷ | ycirc | 00177 | 375 |
Ы | Ycy | 0042B | 1067 |
ы | ycy | 0044B | 1099 |
¥ | yen | 000A5 | 165 |
𝔜 | Yfr | 1D51C | 120092 |
𝔶 | yfr | 1D536 | 120118 |
Ї | YIcy | 00407 | 1031 |
ї | yicy | 00457 | 1111 |
𝕐 | Yopf | 1D550 | 120144 |
𝕪 | yopf | 1D56A | 120170 |
𝒴 | Yscr | 1D4B4 | 119988 |
𝓎 | yscr | 1D4CE | 120014 |
Ю | YUcy | 0042E | 1070 |
ю | yucy | 0044E | 1102 |
Ÿ | Yuml | 00178 | 376 |
ÿ | yuml | 000FF | 255 |
Character | Entity Name | Hex | Dec |
---|---|---|---|
Ź | Zacute | 00179 | 377 |
ź | zacute | 0017A | 378 |
Ž | Zcaron | 0017D | 381 |
ž | zcaron | 0017E | 382 |
З | Zcy | 00417 | 1047 |
з | zcy | 00437 | 1079 |
Ż | Zdot | 0017B | 379 |
ż | zdot | 0017C | 380 |
ℨ | zeetrf | 02128 | 8488 |
| ZeroWidthSpace | 0200B | 8203 |
Ζ | Zeta | 00396 | 918 |
ζ | zeta | 003B6 | 950 |
ℨ | Zfr | 02128 | 8488 |
𝔷 | zfr | 1D537 | 120119 |
Ж | ZHcy | 00416 | 1046 |
ж | zhcy | 00436 | 1078 |
⇝ | zigrarr | 021DD | 8669 |
ℤ | Zopf | 02124 | 8484 |
𝕫 | zopf | 1D56B | 120171 |
𝒵 | Zscr | 1D4B5 | 119989 |
𝓏 | zscr | 1D4CF | 120015 |
| zwj | 0200D | 8205 |
| zwnj | 0200C | 8204 |
┏┳┓ ╔╦╗ ╓╥╖ ┌┬┐ ╭╮ ╱╲
┣╋┫ ╠╬╣ ╟╫╢ ├┼┤ ╰╯ ╲╱
┗┻┛ ╚╩╝ ╙╨╜ └┴┘
━━ ══ ┅┅ ┈┈ ﹍ ﹎﹉ ﹊
_ _ ﹏ ˉ  ̄ ﹌ ˇ
╳ ¦ ‖ ︴ ︳| ┃ ║ ┆ ┇
┏━━┳━━┓ ╔══╦══╗ ┌┈┈┬┈┈┐ ╭┈┈┬┈┈╮
┣━━╋━━┫ ║ ║ ║ ├┈┈┼┈┈┤ ├┈┈┼┈┈┤
┃ ┃ ┃ ╠══╬══╣ ┆ ┆ ┆ ├┈┈┼┈┈┤
┗━━┻━━┛ ╚══╩══╝ └┈┈┴┈┈┘ ╰┈┈┴┈┈╯
△ ▽ ○ ◇ □ ☆ ▷ ◁ ☼ ☏
▲ ▼ ● ◆ ■ ★ ▶ ◀ ☀ ☎
♤ ♡ ♢ ♧ ♠ ♥ ♦ ♣ ☻ ❤
▁ ▂ ▃ ▄ ▅ ▆ ▇ █ ☜ ☞
▉ ▊ ▋ ▌ ▍ ▎ ▏ ‥ … ▪
• ☉ ⊕ Θ ◎ ¤ ⊿ の
↖ ↑ ↗ ▧ ▤ ▨ ▥ ▩ ▦ ⊹
← ↔ → ▏ ▕ ▁ ▔ ▬ 〓 ≡
↙ ↓ ↘ ¬ ¬ † ‡ ▫ ◈ ▣
◤ ◥ ♩ ♪ ♫ ♬ § ¶ ♭ ♯
◣ ◢ ∮ ‖ ㊣ € $ ¥ ☑ ☒
░ ▒ ▓ ◐ ◑ ◕ ♀ ♂ 卍 卐
⊱ ⋛ ⋌ ⋚ ⊰ ☌ ☍ ☋ ∷ Ω
® © ™ ª ㈱ ¢ ℡ № 囍
* * ※ ✲ ❈ ❉ ✿ ❀ ❃ ❁
✪ ☄ ☢ ☣ ☭ ❂ ☪ ➹ ☃ ☂
❦ ❧ ✎ ✄ Ю ✟ ۩ ღ ஐ ☠
♨ ۞
🀀 🀄︎ 🀁 🀂 🀃 🀅 🀆
🀇 🀈 🀉 🀊 🀋 🀌 🀍 🀎 🀏
🀐 🀑 🀒 🀓 🀔 🀕 🀖 🀗 🀘
🀙 🀚 🀛 🀜 🀝 🀞 🀟 🀠 🀡
🀢 🀣 🀤 🀥 🀦 🀧 🀨 🀩
+ - × · ÷ / ± ㏒ ㏑ ∑
∏ × √ ﹢ ﹣ ± ∫ ∮ ∝ ∞
∧ ∨ = ≈ ≡ ≠ < > ≤ ≥
≦ ≧ ≮ ≯ º ¹ ² ³ ½ ¾
¼ % ‰
· ∶ ∴ ∵ ∷ ⊙ ∪ ∩ △ ▽
○ □ → ∉ ∅ ∈ ≌ ∽ ≒ ∥
⊿ ⌒ Φ √ ∠ ⊥
° ㎎ ㎏ μm ㎜ ㎝ ㎞ ㎡ ℃ ℉
′ ″ ㏄ ㏎ ml mol 〒 ¤ ㏕ ¢
µ $ € ¥ ฿
Α Β Γ Δ Ε Ζ Η Θ Ι Κ
Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ
Φ Χ Ψ Ω
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯
⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼ ⑽ ⑾ ⑿ ⒀ ⒁ ⒂ ⒃
⒈ ⒉ ⒊ ⒋ ⒌ ⒍ ⒎ ⒏ ⒐ ⒑ ⒒ ⒓ ⒔ ⒕ ⒖ ⒗
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ XI XII XIII XIV XV XVI
ⅰ ⅱ ⅲ ⅳ ⅵ ⅶ ⅷ ⅸ ⅹ
❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿
㈠ ㈡ ㈢ ㈣ ㈤ ㈥ ㈦ ㈧ ㈨ ㈩
。 ? ! , 、 ; : ~ @ #
. ? ! , \ ; : ~ @ #
% & * + - = < | …… ·
﹪ & * + - = ﹤ ︳ ^ `
- ∕ ¦ ‖ ︴
( ) 【 】 “ ” ‘ ’ 《 》
( ) [ ] " " ' ' « »
﹝ ﹞ < > 〖 〗 { } 〈 〉
〔 〕 < > ‹ › [ ] 「 」
『 』
︵ ︷ ︿ ︹ ︽ ﹁ ﹃ ︻ ﹍ ﹎
︶ ︸ ﹀ ︺ ︾ ﹂ ﹄ ︼ ﹉ ﹊
_ _ ﹏ ˉ  ̄ ﹌ ˇ ¿ ¡
Α Β Γ Δ Ε Ζ Η Θ Ι Κ
Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ
Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ
λ μ ν ξ ο π ρ σ τ υ
φ χ ψ ω
À Á Â Ã Ä Å Æ Ç È É
Ê Ë Ì Í Î Ï Ð Ñ Ò Ó
Ô Õ Ö Ø Ù Ú Û Ü Ý Þ
Š Ÿ Œ
à á â ã ä å æ ç è é
ê ë ì í î ï ð ñ ò ó
õ ô ö ø ù ú û ü ý þ
š ÿ œ
ā á ǎ à ō ó ǒ ò ē é
ě è ń ň ī í ǐ ì ū
ú ǔ ù ǖ ǘ ǚ ǜ ü ɑ
А Б В Г Д Е Ё Ж З И
Й К Л М Н О П Р С Т
У Ф Х Ц Ч Ш Щ Ъ Ы Ь
Э Ю Я
а б в г д е ё ж з и
й к л м н о п р с т
у ф х ц ч ш щ ъ ы ь
э ю я
あ い う え ア イ ウ エ
お か き く オ カ キ ク
け こ さ し ケ コ サ シ
す せ そ た ス セ ソ タ
ち つ て と チ ツ テ ト
な に ぬ ね ナ ニ ヌ ネ
の は ひ ふ ノ ハ ヒ フ
へ ほ ま み ヘ ホ マ ミ
む め も や ム メ モ ヤ
ゆ よ ら り ユ ヨ ラ リ
る れ ろ わ ル レ ロ ワ
を ん ヲ ン
が ぎ ぐ げ ガ ギ グ ゲ
ご ざ じ ず ゴ ザ ジ ズ
ぜ ぞ だ ぢ ゼ ゾ ダ ヂ
づ で ど ば ヅ デ ド バ
び ぶ べ ぼ ビ ブ ベ ボ
ぱ ぴ ぷ ぺ パ ピ プ ペ
ぽ ポ
ぁ ぃ ぅ ぇ ァ ィ ゥ ェ
ぉ ゃ ゅ ょ ォ ャ ュ ョ
っ ゐ ゑ ゎ ッ ヰ ヱ ヮ
ヵ ヶ
。 ゛ ゜ 「 」 ・ 、 ー