1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
#[cfg(not(no_global_oom_handling))]
use super::AsVecIntoIter;
use crate::alloc::{Allocator, Global};
#[cfg(not(no_global_oom_handling))]
use crate::collections::VecDeque;
use crate::raw_vec::RawVec;
use core::array;
use core::fmt;
use core::iter::{
    FusedIterator, InPlaceIterable, SourceIter, TrustedLen, TrustedRandomAccessNoCoerce,
};
use core::marker::PhantomData;
use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
use core::num::NonZeroUsize;
#[cfg(not(no_global_oom_handling))]
use core::ops::Deref;
use core::ptr::{self, NonNull};
use core::slice::{self};

/// 从 vector 移出的迭代器。
///
/// 该 `struct` 是通过 [`Vec`](super::Vec) (由 [`IntoIterator`] trait 提供) 上的 `into_iter` 方法创建的。
///
///
/// # Example
///
/// ```
/// let v = vec![0, 1, 2];
/// let iter: std::vec::IntoIter<_> = v.into_iter();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_insignificant_dtor]
pub struct IntoIter<
    T,
    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
> {
    pub(super) buf: NonNull<T>,
    pub(super) phantom: PhantomData<T>,
    pub(super) cap: usize,
    // drop impl 从 buf,cap 和 alloc 重建一个 RawVec,以避免两次丢弃分配器,我们需要将其包装到 ManuallyDrop 中
    //
    pub(super) alloc: ManuallyDrop<A>,
    pub(super) ptr: *const T,
    pub(super) end: *const T, // 如果 T 是 ZST,则实际上是 ptr + len。选择此编码,以便
                              // ptr == end 是对 Iterator 为空的快速测试,适用于 ZST 和非 ZST。
                              //
}

#[stable(feature = "vec_intoiter_debug", since = "1.13.0")]
impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
    }
}

impl<T, A: Allocator> IntoIter<T, A> {
    /// 返回此迭代器的其余项作为切片。
    ///
    /// # Examples
    ///
    /// ```
    /// let vec = vec!['a', 'b', 'c'];
    /// let mut into_iter = vec.into_iter();
    /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
    /// let _ = into_iter.next().unwrap();
    /// assert_eq!(into_iter.as_slice(), &['b', 'c']);
    /// ```
    #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
    pub fn as_slice(&self) -> &[T] {
        unsafe { slice::from_raw_parts(self.ptr, self.len()) }
    }

    /// 以可变切片的形式返回此迭代器的其余项。
    ///
    /// # Examples
    ///
    /// ```
    /// let vec = vec!['a', 'b', 'c'];
    /// let mut into_iter = vec.into_iter();
    /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
    /// into_iter.as_mut_slice()[2] = 'z';
    /// assert_eq!(into_iter.next().unwrap(), 'a');
    /// assert_eq!(into_iter.next().unwrap(), 'b');
    /// assert_eq!(into_iter.next().unwrap(), 'z');
    /// ```
    #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        unsafe { &mut *self.as_raw_mut_slice() }
    }

    /// 返回底层分配器的引用。
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn allocator(&self) -> &A {
        &self.alloc
    }

    fn as_raw_mut_slice(&mut self) -> *mut [T] {
        ptr::slice_from_raw_parts_mut(self.ptr as *mut T, self.len())
    }

    /// 丢弃剩余的元素并放弃支持分配。
    /// 这种方法保证它在放弃支持分配之前不会 panic。
    ///
    /// 这大致等效于以下内容,但效率更高
    ///
    /// ```
    /// # let mut into_iter = Vec::<u8>::with_capacity(10).into_iter();
    /// let mut into_iter = std::mem::replace(&mut into_iter, Vec::new().into_iter());
    /// (&mut into_iter).for_each(drop);
    /// std::mem::forget(into_iter);
    /// ```
    ///
    /// 在就地迭代的时候会使用这个方法,请参见 vec::in_place_collect 文档以获取概述。
    ///
    ///
    #[cfg(not(no_global_oom_handling))]
    pub(super) fn forget_allocation_drop_remaining(&mut self) {
        let remaining = self.as_raw_mut_slice();

        // 覆盖各个字段,而不是创建一个新的结构体,然后覆盖 &mut self。
        //
        // 这将创建更少的部件
        self.cap = 0;
        self.buf = unsafe { NonNull::new_unchecked(RawVec::NEW.ptr()) };
        self.ptr = self.buf.as_ptr();
        self.end = self.buf.as_ptr();

        // 丢弃剩余的元素可能会发生 panic,因此仅在更新其他字段后才需要这样做。
        //
        unsafe {
            ptr::drop_in_place(remaining);
        }
    }

    /// 忘记丢弃剩余元素,同时仍然允许释放后备分配。
    pub(crate) fn forget_remaining_elements(&mut self) {
        // 对于 ZST 案例,至关重要的是我们在这里改变 `end`,而不是 `ptr`。
        // `ptr` 必须保持对齐,而 `end` 可能未对齐。
        self.end = self.ptr;
    }

    #[cfg(not(no_global_oom_handling))]
    #[inline]
    pub(crate) fn into_vecdeque(self) -> VecDeque<T, A> {
        // 保持我们的 `Drop` impl 丢弃元素和分配器
        let mut this = ManuallyDrop::new(self);

        // SAFETY: 此分配最初来自 `Vec`,因此它通过了所有这些检查。
        // 我们有 `this.buf` ≤ `this.ptr` ≤ `this.end`,所以下面的 sub_ptr 不能换行,并且会产生一个格式正确的范围。
        // `end` ≤ `buf + cap`,因此范围在边界内。
        // 采用 `alloc` 是可以的,因为没有其他东西会查看它,因为我们的 `Drop` impl 不会运行,所以没有更多的代码。
        //
        //
        unsafe {
            let buf = this.buf.as_ptr();
            let initialized = if T::IS_ZST {
                // ZST 的所有指针都是相同的,所以可以说它们都在 "allocation" 的开头。
                //
                0..this.len()
            } else {
                this.ptr.sub_ptr(buf)..this.end.sub_ptr(buf)
            };
            let cap = this.cap;
            let alloc = ManuallyDrop::take(&mut this.alloc);
            VecDeque::from_contiguous_raw_parts_in(buf, initialized, cap, alloc)
        }
    }
}

#[stable(feature = "vec_intoiter_as_ref", since = "1.46.0")]
impl<T, A: Allocator> AsRef<[T]> for IntoIter<T, A> {
    fn as_ref(&self) -> &[T] {
        self.as_slice()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send, A: Allocator + Send> Send for IntoIter<T, A> {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Sync, A: Allocator + Sync> Sync for IntoIter<T, A> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> Iterator for IntoIter<T, A> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        if self.ptr == self.end {
            None
        } else if T::IS_ZST {
            // `ptr` 必须留在原处以保持对齐,因此我们通过减少 `end` 将长度减少 1。
            //
            self.end = self.end.wrapping_byte_sub(1);

            // 组成此 ZST 的值。
            Some(unsafe { mem::zeroed() })
        } else {
            let old = self.ptr;
            self.ptr = unsafe { self.ptr.add(1) };

            Some(unsafe { ptr::read(old) })
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let exact = if T::IS_ZST {
            self.end.addr().wrapping_sub(self.ptr.addr())
        } else {
            unsafe { self.end.sub_ptr(self.ptr) }
        };
        (exact, Some(exact))
    }

    #[inline]
    fn advance_by(&mut self, n: usize) -> Result<(), NonZeroUsize> {
        let step_size = self.len().min(n);
        let to_drop = ptr::slice_from_raw_parts_mut(self.ptr as *mut T, step_size);
        if T::IS_ZST {
            // 请参见 `next`,了解我们为何在此处子 `end`。
            self.end = self.end.wrapping_byte_sub(step_size);
        } else {
            // SAFETY: 上面的 min() 确保 step_size 在界限内
            self.ptr = unsafe { self.ptr.add(step_size) };
        }
        // SAFETY: 上面的 min() 确保 step_size 在界限内
        unsafe {
            ptr::drop_in_place(to_drop);
        }
        NonZeroUsize::new(n - step_size).map_or(Ok(()), Err)
    }

    #[inline]
    fn count(self) -> usize {
        self.len()
    }

    #[inline]
    fn next_chunk<const N: usize>(&mut self) -> Result<[T; N], core::array::IntoIter<T, N>> {
        let mut raw_ary = MaybeUninit::uninit_array();

        let len = self.len();

        if T::IS_ZST {
            if len < N {
                self.forget_remaining_elements();
                // 安全性: ZST 可以凭空变出,只有数量必须正确
                return Err(unsafe { array::IntoIter::new_unchecked(raw_ary, 0..len) });
            }

            self.end = self.end.wrapping_byte_sub(N);
            // 安全: 同上
            return Ok(unsafe { raw_ary.transpose().assume_init() });
        }

        if len < N {
            // 安全性: `len` 表示有这么多元素可用,我们刚刚检查了它是否适合数组。
            //
            unsafe {
                ptr::copy_nonoverlapping(self.ptr, raw_ary.as_mut_ptr() as *mut T, len);
                self.forget_remaining_elements();
                return Err(array::IntoIter::new_unchecked(raw_ary, 0..len));
            }
        }

        // 安全性: `len` 大于数组大小。
        // 在此处复制固定数量以完全初始化数组。
        return unsafe {
            ptr::copy_nonoverlapping(self.ptr, raw_ary.as_mut_ptr() as *mut T, N);
            self.ptr = self.ptr.add(N);
            Ok(raw_ary.transpose().assume_init())
        };
    }

    unsafe fn __iterator_get_unchecked(&mut self, i: usize) -> Self::Item
    where
        Self: TrustedRandomAccessNoCoerce,
    {
        // SAFETY: 调用者必须保证 `i` 在 `Vec<T>` 的范围内,因此 `i` 不会溢出 `isize`,并且保证 `self.ptr.add(i)` 指向 `Vec<T>` 的元素,从而保证对解引用有效。
        //
        //
        // 还要注意,`Self: TrustedRandomAccess` 的实现要求 `T: Copy`,因此从缓冲区读取元素不会使它们对于 `Drop` 无效。
        //
        //
        //
        //
        unsafe {
            if T::IS_ZST { mem::zeroed() } else { ptr::read(self.ptr.add(i)) }
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> {
    #[inline]
    fn next_back(&mut self) -> Option<T> {
        if self.end == self.ptr {
            None
        } else if T::IS_ZST {
            // 有关为何不使用 'ptr.offset' 的信息,请参见上文
            self.end = self.end.wrapping_byte_sub(1);

            // 组成此 ZST 的值。
            Some(unsafe { mem::zeroed() })
        } else {
            self.end = unsafe { self.end.sub(1) };

            Some(unsafe { ptr::read(self.end) })
        }
    }

    #[inline]
    fn advance_back_by(&mut self, n: usize) -> Result<(), NonZeroUsize> {
        let step_size = self.len().min(n);
        if T::IS_ZST {
            // SAFETY: 与 advance_by() 相同
            self.end = self.end.wrapping_byte_sub(step_size);
        } else {
            // SAFETY: 与 advance_by() 相同
            self.end = unsafe { self.end.sub(step_size) };
        }
        let to_drop = ptr::slice_from_raw_parts_mut(self.end as *mut T, step_size);
        // SAFETY: 与 advance_by() 相同
        unsafe {
            ptr::drop_in_place(to_drop);
        }
        NonZeroUsize::new(n - step_size).map_or(Ok(()), Err)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> {
    fn is_empty(&self) -> bool {
        self.ptr == self.end
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {}

#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<T, A: Allocator> TrustedLen for IntoIter<T, A> {}

#[stable(feature = "default_iters", since = "1.70.0")]
impl<T, A> Default for IntoIter<T, A>
where
    A: Allocator + Default,
{
    /// 创建一个空的 `vec::IntoIter`。
    ///
    /// ```
    /// # use std::vec;
    /// let iter: vec::IntoIter<u8> = Default::default();
    /// assert_eq!(iter.len(), 0);
    /// assert_eq!(iter.as_slice(), &[]);
    /// ```
    fn default() -> Self {
        super::Vec::new_in(Default::default()).into_iter()
    }
}

#[doc(hidden)]
#[unstable(issue = "none", feature = "std_internals")]
#[rustc_unsafe_specialization_marker]
pub trait NonDrop {}

// T: 复制为 !Drop 的近似值,因为 get_unchecked 不会推进 self.ptr,因此我们无法实现丢弃处理
//
#[unstable(issue = "none", feature = "std_internals")]
impl<T: Copy> NonDrop for T {}

#[doc(hidden)]
#[unstable(issue = "none", feature = "std_internals")]
// 不得实现 TrustedRandomAccess (无 NoCoerce),因为 `T` 的 subtypes/supertypes 可能不是 `NonDrop`
//
unsafe impl<T, A: Allocator> TrustedRandomAccessNoCoerce for IntoIter<T, A>
where
    T: NonDrop,
{
    const MAY_HAVE_SIDE_EFFECT: bool = false;
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_into_iter_clone", since = "1.8.0")]
impl<T: Clone, A: Allocator + Clone> Clone for IntoIter<T, A> {
    #[cfg(not(test))]
    fn clone(&self) -> Self {
        self.as_slice().to_vec_in(self.alloc.deref().clone()).into_iter()
    }
    #[cfg(test)]
    fn clone(&self) -> Self {
        crate::slice::to_vec(self.as_slice(), self.alloc.deref().clone()).into_iter()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T, A: Allocator> Drop for IntoIter<T, A> {
    fn drop(&mut self) {
        struct DropGuard<'a, T, A: Allocator>(&'a mut IntoIter<T, A>);

        impl<T, A: Allocator> Drop for DropGuard<'_, T, A> {
            fn drop(&mut self) {
                unsafe {
                    // `IntoIter::alloc` 在此之后不再使用,它会被 RawVec 丢弃
                    let alloc = ManuallyDrop::take(&mut self.0.alloc);
                    // RawVec 处理重新分配
                    let _ = RawVec::from_raw_parts_in(self.0.buf.as_ptr(), self.0.cap, alloc);
                }
            }
        }

        let guard = DropGuard(self);
        // 销毁剩余的元素
        unsafe {
            ptr::drop_in_place(guard.0.as_raw_mut_slice());
        }
        // 现在,`guard` 将被丢弃并执行其余的操作
    }
}

// 除了以下三个不安全的 traits 的 SAFETY 不变量之外,还可以参考 vec::in_place_collect 模块文档以获得概述
//
#[unstable(issue = "none", feature = "inplace_iteration")]
#[doc(hidden)]
unsafe impl<T, A: Allocator> InPlaceIterable for IntoIter<T, A> {}

#[unstable(issue = "none", feature = "inplace_iteration")]
#[doc(hidden)]
unsafe impl<T, A: Allocator> SourceIter for IntoIter<T, A> {
    type Source = Self;

    #[inline]
    unsafe fn as_inner(&mut self) -> &mut Self::Source {
        self
    }
}

#[cfg(not(no_global_oom_handling))]
unsafe impl<T> AsVecIntoIter for IntoIter<T> {
    type Item = T;

    fn as_into_iter(&mut self) -> &mut IntoIter<Self::Item> {
        self
    }
}