1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
use crate::iter;
use crate::num::Wrapping;
/// 一个表示可以通过对迭代器求和来创建的类型的 trait。
///
/// 这个 trait 用于实现 [`Iterator::sum()`]。
/// 可以通过在迭代器上使用 [`sum()`] 方法生成实现此 trait 的类型。
/// 和 [`FromIterator`] 一样,这个 trait 应该很少被直接调用。
///
/// [`sum()`]: Iterator::sum
/// [`FromIterator`]: iter::FromIterator
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
#[rustc_on_unimplemented(
message = "a value of type `{Self}` cannot be made by summing an iterator over elements of type `{A}`",
label = "value of type `{Self}` cannot be made by summing a `std::iter::Iterator<Item={A}>`"
)]
pub trait Sum<A = Self>: Sized {
/// 使用迭代器并通过 "summing up" 项从元素生成 `Self` 的方法。
///
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
fn sum<I: Iterator<Item = A>>(iter: I) -> Self;
}
/// 一个表示可以通过将迭代器的元素相乘来创建类型的 trait。
///
/// 这个 trait 用于实现 [`Iterator::product()`]。
/// 可以通过在迭代器上使用 [`product()`] 方法生成实现此 trait 的类型。
///
/// 和 [`FromIterator`] 一样,这个 trait 应该很少被直接调用。
///
/// [`product()`]: Iterator::product
/// [`FromIterator`]: iter::FromIterator
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
#[rustc_on_unimplemented(
message = "a value of type `{Self}` cannot be made by multiplying all elements of type `{A}` from an iterator",
label = "value of type `{Self}` cannot be made by multiplying all elements from a `std::iter::Iterator<Item={A}>`"
)]
pub trait Product<A = Self>: Sized {
/// 该方法采用迭代器并通过乘以项从元素生成 `Self`。
///
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
fn product<I: Iterator<Item = A>>(iter: I) -> Self;
}
macro_rules! integer_sum_product {
(@impls $zero:expr, $one:expr, #[$attr:meta], $($a:ty)*) => ($(
#[$attr]
impl Sum for $a {
fn sum<I: Iterator<Item=Self>>(iter: I) -> Self {
iter.fold(
$zero,
#[rustc_inherit_overflow_checks]
|a, b| a + b,
)
}
}
#[$attr]
impl Product for $a {
fn product<I: Iterator<Item=Self>>(iter: I) -> Self {
iter.fold(
$one,
#[rustc_inherit_overflow_checks]
|a, b| a * b,
)
}
}
#[$attr]
impl<'a> Sum<&'a $a> for $a {
fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
iter.fold(
$zero,
#[rustc_inherit_overflow_checks]
|a, b| a + b,
)
}
}
#[$attr]
impl<'a> Product<&'a $a> for $a {
fn product<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
iter.fold(
$one,
#[rustc_inherit_overflow_checks]
|a, b| a * b,
)
}
}
)*);
($($a:ty)*) => (
integer_sum_product!(@impls 0, 1,
#[stable(feature = "iter_arith_traits", since = "1.12.0")],
$($a)*);
integer_sum_product!(@impls Wrapping(0), Wrapping(1),
#[stable(feature = "wrapping_iter_arith", since = "1.14.0")],
$(Wrapping<$a>)*);
);
}
macro_rules! float_sum_product {
($($a:ident)*) => ($(
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
impl Sum for $a {
fn sum<I: Iterator<Item=Self>>(iter: I) -> Self {
iter.fold(
0.0,
#[rustc_inherit_overflow_checks]
|a, b| a + b,
)
}
}
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
impl Product for $a {
fn product<I: Iterator<Item=Self>>(iter: I) -> Self {
iter.fold(
1.0,
#[rustc_inherit_overflow_checks]
|a, b| a * b,
)
}
}
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
impl<'a> Sum<&'a $a> for $a {
fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
iter.fold(
0.0,
#[rustc_inherit_overflow_checks]
|a, b| a + b,
)
}
}
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
impl<'a> Product<&'a $a> for $a {
fn product<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
iter.fold(
1.0,
#[rustc_inherit_overflow_checks]
|a, b| a * b,
)
}
}
)*)
}
integer_sum_product! { i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize }
float_sum_product! { f32 f64 }
#[stable(feature = "iter_arith_traits_result", since = "1.16.0")]
impl<T, U, E> Sum<Result<U, E>> for Result<T, E>
where
T: Sum<U>,
{
/// 接受 [`Iterator`] 中的每个元素:如果它是 [`Err`],则不再获取其他元素,并返回 [`Err`]。
/// 如果没有发生 [`Err`],则返回所有元素的总和。
///
/// # Examples
///
/// 这将对 vector 中的每个整数求和,如果遇到负元素,则拒绝求和:
///
/// ```
/// let f = |&x: &i32| if x < 0 { Err("Negative element found") } else { Ok(x) };
/// let v = vec![1, 2];
/// let res: Result<i32, _> = v.iter().map(f).sum();
/// assert_eq!(res, Ok(3));
/// let v = vec![1, -2];
/// let res: Result<i32, _> = v.iter().map(f).sum();
/// assert_eq!(res, Err("Negative element found"));
/// ```
///
///
fn sum<I>(iter: I) -> Result<T, E>
where
I: Iterator<Item = Result<U, E>>,
{
iter::try_process(iter, |i| i.sum())
}
}
#[stable(feature = "iter_arith_traits_result", since = "1.16.0")]
impl<T, U, E> Product<Result<U, E>> for Result<T, E>
where
T: Product<U>,
{
/// 接受 [`Iterator`] 中的每个元素:如果它是 [`Err`],则不再获取其他元素,并返回 [`Err`]。
/// 如果没有发生 [`Err`],则返回所有元素的乘积。
///
/// # Examples
///
/// 这会将字符串 vector 中的每个数字相乘,如果无法解析字符串,则操作返回 `Err`:
///
/// ```
/// let nums = vec!["5", "10", "1", "2"];
/// let total: Result<usize, _> = nums.iter().map(|w| w.parse::<usize>()).product();
/// assert_eq!(total, Ok(100));
/// let nums = vec!["5", "10", "one", "2"];
/// let total: Result<usize, _> = nums.iter().map(|w| w.parse::<usize>()).product();
/// assert!(total.is_err());
/// ```
///
///
fn product<I>(iter: I) -> Result<T, E>
where
I: Iterator<Item = Result<U, E>>,
{
iter::try_process(iter, |i| i.product())
}
}
#[stable(feature = "iter_arith_traits_option", since = "1.37.0")]
impl<T, U> Sum<Option<U>> for Option<T>
where
T: Sum<U>,
{
/// 接受 [`Iterator`] 中的每个元素:如果它是 [`None`],则不再获取其他元素,并返回 [`None`]。
/// 如果没有发生 [`None`],则返回所有元素的总和。
///
/// # Examples
///
/// 这总结了字符 'a' 在字符串 vector 中的位置,如果单词没有字符 'a',则该操作返回 `None`:
///
///
/// ```
/// let words = vec!["have", "a", "great", "day"];
/// let total: Option<usize> = words.iter().map(|w| w.find('a')).sum();
/// assert_eq!(total, Some(5));
/// let words = vec!["have", "a", "good", "day"];
/// let total: Option<usize> = words.iter().map(|w| w.find('a')).sum();
/// assert_eq!(total, None);
/// ```
///
fn sum<I>(iter: I) -> Option<T>
where
I: Iterator<Item = Option<U>>,
{
iter::try_process(iter, |i| i.sum())
}
}
#[stable(feature = "iter_arith_traits_option", since = "1.37.0")]
impl<T, U> Product<Option<U>> for Option<T>
where
T: Product<U>,
{
/// 接受 [`Iterator`] 中的每个元素:如果它是 [`None`],则不再获取其他元素,并返回 [`None`]。
/// 如果没有发生 [`None`],则返回所有元素的乘积。
///
/// # Examples
///
/// 这会将字符串 vector 中的每个数字相乘,如果无法解析字符串,则操作返回 `None`:
///
/// ```
/// let nums = vec!["5", "10", "1", "2"];
/// let total: Option<usize> = nums.iter().map(|w| w.parse::<usize>().ok()).product();
/// assert_eq!(total, Some(100));
/// let nums = vec!["5", "10", "one", "2"];
/// let total: Option<usize> = nums.iter().map(|w| w.parse::<usize>().ok()).product();
/// assert_eq!(total, None);
/// ```
///
///
fn product<I>(iter: I) -> Option<T>
where
I: Iterator<Item = Option<U>>,
{
iter::try_process(iter, |i| i.product())
}
}