1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
/// 从 [`Iterator`] 转换。
///
/// 通过为类型实现 `FromIterator`,可以定义如何从迭代器创建它。
/// 这对于描述某种集合的类型很常见。
///
/// 如果想从迭代器的内容中创建一个集合,则首选 [`Iterator::collect()`] 方法。
/// 但是,当您需要指定容器类型时,[`FromIterator::from_iter()`] 比使用 turbofish 更具可读性 (例如
///
/// `::<Vec<_>>()`).
/// 有关其使用的更多示例,请参见 [`Iterator::collect()`] 文档。
///
/// 另请参见:[`IntoIterator`]。
///
/// # Examples
///
/// 基本用法:
///
/// ```
/// let five_fives = std::iter::repeat(5).take(5);
///
/// let v = Vec::from_iter(five_fives);
///
/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
/// ```
///
/// 使用 [`Iterator::collect()`] 隐式使用 `FromIterator`:
///
/// ```
/// let five_fives = std::iter::repeat(5).take(5);
///
/// let v: Vec<i32> = five_fives.collect();
///
/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
/// ```
///
/// 使用 [`FromIterator::from_iter()`] 作为更易读的替代方案
/// [`Iterator::collect()`]:
///
/// ```
/// use std::collections::VecDeque;
/// let first = (0..10).collect::<VecDeque<i32>>();
/// let second = VecDeque::from_iter(0..10);
///
/// assert_eq!(first, second);
/// ```
///
/// 为您的类型实现 `FromIterator`:
///
/// ```
/// // 一个样本集合,这只是 Vec<T> 的包装
/// #[derive(Debug)]
/// struct MyCollection(Vec<i32>);
///
/// // 让我们给它一些方法,以便我们可以创建一个方法并向其中添加一些东西。
/////
/// impl MyCollection {
/// fn new() -> MyCollection {
/// MyCollection(Vec::new())
/// }
///
/// fn add(&mut self, elem: i32) {
/// self.0.push(elem);
/// }
/// }
///
/// // 我们将实现 FromIterator
/// impl FromIterator<i32> for MyCollection {
/// fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self {
/// let mut c = MyCollection::new();
///
/// for i in iter {
/// c.add(i);
/// }
///
/// c
/// }
/// }
///
/// // 现在我们可以创建一个新的迭代器...
/// let iter = (0..5).into_iter();
///
/// // ... 并用它制作一个 MyCollection
/// let c = MyCollection::from_iter(iter);
///
/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
///
/// // 也收集作品!
///
/// let iter = (0..5).into_iter();
/// let c: MyCollection = iter.collect();
///
/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
/// ```
///
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
on(
_Self = "&[{A}]",
message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere",
label = "try explicitly collecting into a `Vec<{A}>`",
),
on(
all(A = "{integer}", any(_Self = "&[{integral}]",)),
message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere",
label = "try explicitly collecting into a `Vec<{A}>`",
),
on(
_Self = "[{A}]",
message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size",
label = "try explicitly collecting into a `Vec<{A}>`",
),
on(
all(A = "{integer}", any(_Self = "[{integral}]",)),
message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size",
label = "try explicitly collecting into a `Vec<{A}>`",
),
on(
_Self = "[{A}; _]",
message = "an array of type `{Self}` cannot be built directly from an iterator",
label = "try collecting into a `Vec<{A}>`, then using `.try_into()`",
),
on(
all(A = "{integer}", any(_Self = "[{integral}; _]",)),
message = "an array of type `{Self}` cannot be built directly from an iterator",
label = "try collecting into a `Vec<{A}>`, then using `.try_into()`",
),
message = "a value of type `{Self}` cannot be built from an iterator \
over elements of type `{A}`",
label = "value of type `{Self}` cannot be built from `std::iter::Iterator<Item={A}>`"
)]
#[rustc_diagnostic_item = "FromIterator"]
pub trait FromIterator<A>: Sized {
/// 从迭代器创建一个值。
///
/// 有关更多信息,请参见 [模块级文档][module-level documentation]。
///
/// [module-level documentation]: crate::iter
///
/// # Examples
///
/// 基本用法:
///
/// ```
/// let five_fives = std::iter::repeat(5).take(5);
///
/// let v = Vec::from_iter(five_fives);
///
/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self;
}
/// 转换为 [`Iterator`]。
///
/// 通过为类型实现 `IntoIterator`,可以定义如何将其转换为迭代器。
/// 这对于描述某种集合的类型很常见。
///
/// 实现 `IntoIterator` 的好处之一是您的类型将为 [使用 Rust 的 `for` 循环语法](crate::iter#for-loops-and-intoiterator)。
///
///
/// 另请参见:[`FromIterator`]。
///
/// # Examples
///
/// 基本用法:
///
/// ```
/// let v = [1, 2, 3];
/// let mut iter = v.into_iter();
///
/// assert_eq!(Some(1), iter.next());
/// assert_eq!(Some(2), iter.next());
/// assert_eq!(Some(3), iter.next());
/// assert_eq!(None, iter.next());
/// ```
/// 为您的类型实现 `IntoIterator`:
///
/// ```
/// // 一个样本集合,这只是 Vec<T> 的包装
/// #[derive(Debug)]
/// struct MyCollection(Vec<i32>);
///
/// // 让我们给它一些方法,以便我们可以创建一个方法并向其中添加一些东西。
/////
/// impl MyCollection {
/// fn new() -> MyCollection {
/// MyCollection(Vec::new())
/// }
///
/// fn add(&mut self, elem: i32) {
/// self.0.push(elem);
/// }
/// }
///
/// // 我们将实现 IntoIterator
/// impl IntoIterator for MyCollection {
/// type Item = i32;
/// type IntoIter = std::vec::IntoIter<Self::Item>;
///
/// fn into_iter(self) -> Self::IntoIter {
/// self.0.into_iter()
/// }
/// }
///
/// // 现在我们可以做一个新的集合...
/// let mut c = MyCollection::new();
///
/// // ... 添加一些东西...
/// c.add(0);
/// c.add(1);
/// c.add(2);
///
/// // ... 然后将其转换为迭代器:
/// for (i, n) in c.into_iter().enumerate() {
/// assert_eq!(i as i32, n);
/// }
/// ```
///
/// 通常将 `IntoIterator` 用作 trait bound。只要它仍然是迭代器,就可以更改输入集合类型。
/// 可以通过限制限制来指定其他范围
/// `Item`:
///
/// ```rust
/// fn collect_as_strings<T>(collection: T) -> Vec<String>
/// where
/// T: IntoIterator,
/// T::Item: std::fmt::Debug,
/// {
/// collection
/// .into_iter()
/// .map(|item| format!("{item:?}"))
/// .collect()
/// }
/// ```
///
///
#[rustc_diagnostic_item = "IntoIterator"]
#[rustc_skip_array_during_method_dispatch]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait IntoIterator {
/// 被迭代的元素的类型。
#[stable(feature = "rust1", since = "1.0.0")]
type Item;
/// 我们将其变成哪种迭代器?
#[stable(feature = "rust1", since = "1.0.0")]
type IntoIter: Iterator<Item = Self::Item>;
/// 从一个值创建一个迭代器。
///
/// 有关更多信息,请参见 [模块级文档][module-level documentation]。
///
/// [module-level documentation]: crate::iter
///
/// # Examples
///
/// 基本用法:
///
/// ```
/// let v = [1, 2, 3];
/// let mut iter = v.into_iter();
///
/// assert_eq!(Some(1), iter.next());
/// assert_eq!(Some(2), iter.next());
/// assert_eq!(Some(3), iter.next());
/// assert_eq!(None, iter.next());
/// ```
#[lang = "into_iter"]
#[stable(feature = "rust1", since = "1.0.0")]
fn into_iter(self) -> Self::IntoIter;
}
#[rustc_const_unstable(feature = "const_intoiterator_identity", issue = "90603")]
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator> IntoIterator for I {
type Item = I::Item;
type IntoIter = I;
#[inline]
fn into_iter(self) -> I {
self
}
}
/// 用迭代器的内容扩展集合。
///
/// 迭代器产生一系列值,并且集合也可以视为一系列值。
/// `Extend` trait 弥补了这一差距,使您可以通过包含该迭代器的内容来扩展集合。
/// 当使用已经存在的键扩展集合时,该条目将被更新; 如果集合允许多个具有相同键的条目,则将插入该条目。
///
///
/// # Examples
///
/// 基本用法:
///
/// ```
/// // 您可以使用一些字符扩展 String:
/// let mut message = String::from("The first three letters are: ");
///
/// message.extend(&['a', 'b', 'c']);
///
/// assert_eq!("abc", &message[29..32]);
/// ```
///
/// 实现 `Extend`:
///
/// ```
/// // 一个样本集合,这只是 Vec<T> 的包装
/// #[derive(Debug)]
/// struct MyCollection(Vec<i32>);
///
/// // 让我们给它一些方法,以便我们可以创建一个方法并向其中添加一些东西。
/////
/// impl MyCollection {
/// fn new() -> MyCollection {
/// MyCollection(Vec::new())
/// }
///
/// fn add(&mut self, elem: i32) {
/// self.0.push(elem);
/// }
/// }
///
/// // 由于 MyCollection 包含 i32 的列表,因此我们为 i32 实现 Extend
/// impl Extend<i32> for MyCollection {
///
/// // 使用具体的类型签名,这要简单一些:我们可以调用扩展为可转换为 It32 的 Iterator 的任何内容。
/// // 因为我们需要将 i32 放入 MyCollection 中。
/////
/// fn extend<T: IntoIterator<Item=i32>>(&mut self, iter: T) {
///
/// // 实现非常简单:遍历迭代器,然后将每个元素 add() 传递给我们自己。
/////
/// for elem in iter {
/// self.add(elem);
/// }
/// }
/// }
///
/// let mut c = MyCollection::new();
///
/// c.add(5);
/// c.add(6);
/// c.add(7);
///
/// // 让我们用三个数字扩展集合
/// c.extend(vec![1, 2, 3]);
///
/// // 我们已经将这些元素添加到最后
/// assert_eq!("MyCollection([5, 6, 7, 1, 2, 3])", format!("{c:?}"));
/// ```
///
///
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Extend<A> {
/// 使用迭代器的内容扩展集合。
///
/// 由于这是此 trait 唯一需要的方法,因此 [trait-level] 文档包含更多详细信息。
///
///
/// [trait-level]: Extend
///
/// # Examples
///
/// 基本用法:
///
/// ```
/// // 您可以使用一些字符扩展 String:
/// let mut message = String::from("abc");
///
/// message.extend(['d', 'e', 'f'].iter());
///
/// assert_eq!("abcdef", &message);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn extend<T: IntoIterator<Item = A>>(&mut self, iter: T);
/// 用一个元素扩展一个集合。
#[unstable(feature = "extend_one", issue = "72631")]
fn extend_one(&mut self, item: A) {
self.extend(Some(item));
}
/// 在集合中为给定数量的附加元素保留容量。
///
/// 默认实现不执行任何操作。
#[unstable(feature = "extend_one", issue = "72631")]
fn extend_reserve(&mut self, additional: usize) {
let _ = additional;
}
}
#[stable(feature = "extend_for_unit", since = "1.28.0")]
impl Extend<()> for () {
fn extend<T: IntoIterator<Item = ()>>(&mut self, iter: T) {
iter.into_iter().for_each(drop)
}
fn extend_one(&mut self, _item: ()) {}
}
#[stable(feature = "extend_for_tuple", since = "1.56.0")]
impl<A, B, ExtendA, ExtendB> Extend<(A, B)> for (ExtendA, ExtendB)
where
ExtendA: Extend<A>,
ExtendB: Extend<B>,
{
/// 允许 `extend` 一个集合的元组也实现 `Extend`。
///
/// 另请参见:[`Iterator::unzip`]
///
/// # Examples
/// ```
/// let mut tuple = (vec![0], vec![1]);
/// tuple.extend([(2, 3), (4, 5), (6, 7)]);
/// assert_eq!(tuple.0, [0, 2, 4, 6]);
/// assert_eq!(tuple.1, [1, 3, 5, 7]);
///
/// // 还允许任意嵌套的元组作为元素
/// let mut nested_tuple = (vec![1], (vec![2], vec![3]));
/// nested_tuple.extend([(4, (5, 6)), (7, (8, 9))]);
///
/// let (a, (b, c)) = nested_tuple;
/// assert_eq!(a, [1, 4, 7]);
/// assert_eq!(b, [2, 5, 8]);
/// assert_eq!(c, [3, 6, 9]);
/// ```
fn extend<T: IntoIterator<Item = (A, B)>>(&mut self, into_iter: T) {
let (a, b) = self;
let iter = into_iter.into_iter();
fn extend<'a, A, B>(
a: &'a mut impl Extend<A>,
b: &'a mut impl Extend<B>,
) -> impl FnMut((), (A, B)) + 'a {
move |(), (t, u)| {
a.extend_one(t);
b.extend_one(u);
}
}
let (lower_bound, _) = iter.size_hint();
if lower_bound > 0 {
a.extend_reserve(lower_bound);
b.extend_reserve(lower_bound);
}
iter.fold((), extend(a, b));
}
fn extend_one(&mut self, item: (A, B)) {
self.0.extend_one(item.0);
self.1.extend_one(item.1);
}
fn extend_reserve(&mut self, additional: usize) {
self.0.extend_reserve(additional);
self.1.extend_reserve(additional);
}
}